Namespaces
Variants
Actions

Difference between revisions of "Plancherel formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A formula expressing the invariance of the [[Inner product|inner product]] under Fourier transformation (cf. [[Fourier transform|Fourier transform]]) on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727601.png" />:
+
<!--
 +
p0727601.png
 +
$#A+1 = 47 n = 1
 +
$#C+1 = 47 : ~/encyclopedia/old_files/data/P072/P.0702760 Plancherel formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727602.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
In the classical case, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727603.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727604.png" />-dimensional Euclidean space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727606.png" /> denote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727607.png" />-dimensional Lebesgue measure, the Fourier transformation
+
A formula expressing the invariance of the [[Inner product|inner product]] under Fourier transformation (cf. [[Fourier transform|Fourier transform]]) on the space $  L _ {2} ( X) $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727608.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { Y } \widehat{f}  _ {1} ( y) \overline{ {\widehat{f}  _ {2} ( y) }}\; d \mu ( y)  = \int\limits _ { X } f _ {1} ( x) \overline{ {f _ {2} ( x) }}\; d \mu ( x).
 +
$$
  
on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p0727609.png" /> is a continuous extension of the classical Fourier transformation
+
In the classical case, where  $  X = Y = \mathbf R  ^ {n} $
 +
is $  n $-
 +
dimensional Euclidean space and  $  \mu ( x) $
 +
and  $  \mu ( y) $
 +
denote  $  n $-
 +
dimensional Lebesgue measure, the Fourier transformation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276010.png" /></td> </tr></table>
+
$$
 +
f( x)  \mapsto  \widehat{f}  ( y)
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276011.png" /></td> </tr></table>
+
on  $  L _ {2} ( \mathbf R  ^ {n} ) $
 +
is a continuous extension of the classical Fourier transformation
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276012.png" /> is the inner product in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276013.png" />, from the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276014.png" /> to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276015.png" />.
+
$$
 +
g( x)  \mapsto  \widehat{g}  ( y)  =
 +
\frac{1}{( 2 \pi )  ^ {n/2} }
 +
\int\limits _ {\mathbf R  ^ {n} }
 +
g( x) e ^ {i( x, y) }  dx,
 +
$$
  
Plancherel's formula applies also when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276016.png" /> is a locally compact commutative [[Topological group|topological group]], with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276017.png" /> its [[Character group|character group]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276021.png" /> are correspondingly normalized invariant measures (cf. [[Invariant measure|Invariant measure]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276023.png" />, and the Fourier transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276024.png" /> on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276025.png" /> is a continuous extension of the mapping
+
$$
 +
g  \in  L _ {1} ( \mathbf R  ^ {n} ) ,\  x  = ( x _ {1} \dots x _ {n} ) ,\  y  = ( y _ {1} \dots y _ {n} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276026.png" /></td> </tr></table>
+
where  $  ( x, y) $
 +
is the inner product in  $  \mathbf R  ^ {n} $,
 +
from the set  $  L _ {1} ( \mathbf R  ^ {n} ) \cap L _ {2} ( \mathbf R  ^ {n} ) $
 +
to the space  $  L _ {2} ( \mathbf R  ^ {n} ) $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276027.png" /></td> </tr></table>
+
Plancherel's formula applies also when  $  X $
 +
is a locally compact commutative [[Topological group|topological group]], with  $  Y $
 +
its [[Character group|character group]],  $  x \in X $,
 +
$  y \in Y $,
 +
$  \mu ( x) $
 +
and  $  \mu ( y) $
 +
are correspondingly normalized invariant measures (cf. [[Invariant measure|Invariant measure]]) on  $  X $
 +
and  $  Y $,
 +
and the Fourier transformation  $  f( x) \mapsto \widehat{f}  ( y) $
 +
on the space  $  L _ {2} ( X) $
 +
is a continuous extension of the mapping
  
from the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276028.png" /> to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276029.png" />.
+
$$
 +
g( x)  \mapsto  \widehat{g}  ( y)  = \int\limits _ { X } g( x) y( x)  d \mu ( x),
 +
$$
  
Plancherel's formula can be extended to non-commutative topological groups. Let, e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276030.png" /> be a compact Hausdorff group, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276031.png" /> be an invariant measure on it, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276032.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276033.png" /> be an irreducible finite-dimensional unitary representation of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276035.png" /> in a Hilbert space (cf. [[Representation of a compact group|Representation of a compact group]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276037.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276038.png" />, let
+
$$
 +
g( x)  \in L _ {1} ( X) ,\  y( x)  \in  Y,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276039.png" /></td> </tr></table>
+
from the set  $  L _ {1} ( X) \cap L _ {2} ( X) $
 +
to the space  $  L _ {2} ( Y) $.
  
(* denotes transition to the adjoint operator), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276040.png" /> be the [[Trace|trace]] of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276041.png" />. Then the generalized Plancherel formula is:
+
Plancherel's formula can be extended to non-commutative topological groups. Let, e.g.,  $  G $
 +
be a compact Hausdorff group, let  $  \mu $
 +
be an invariant measure on it,  $  \mu ( G) = 1 $,  
 +
let $  g \mapsto U _ {g} ^ {( \alpha ) } $
 +
be an irreducible finite-dimensional unitary representation of dimension  $  n _  \alpha  $
 +
of  $  G $
 +
in a Hilbert space (cf. [[Representation of a compact group|Representation of a compact group]]),  $  g \in G $,
 +
$  \alpha = 1, 2 \dots $
 +
$  x( g) \in L _ {2} ( G) $,
 +
let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
T _ {x} ^ {( \alpha ) }  = \int\limits _ { G } x( g) U _ {g} ^ {( \alpha )* }  d \mu ( g)
 +
$$
 +
 
 +
(* denotes transition to the adjoint operator), and let  $  \mathop{\rm Tr} ( T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } ) $
 +
be the [[Trace|trace]] of the operator  $  T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } $.
 +
Then the generalized Plancherel formula is:
 +
 
 +
$$ \tag{* }
 +
\int\limits _ { G } | x( g) |  ^ {2}  d \mu ( g)  = \sum _  \alpha  n _  \alpha  \mathop{\rm Tr} ( T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } ).
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
See also the references to [[Fourier transform|Fourier transform]]. In the case of a locally compact unimodular type-I group there is a Plancherel formula quite analogous to (*), cf. [[#References|[a3]]], § 18.8: just replace in (*) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276043.png" /> by an integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276044.png" /> over the unitary dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276045.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276046.png" />. In general, this formula is only available in abstract form. It is an important area of research to obtain more information about the Plancherel measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276047.png" />, such as its support, its discrete part and its full explicit expression. In the case of a real non-compact semi-simple Lie group this program was successfully completed by Harish-Chandra. More generally, Plancherel formulas can be considered on homogeneous spaces, for instance pseudo-Riemannian ones, cf. [[#References|[a1]]], § II.2. Specialization of Plancherel formulas on groups or homogeneous spaces to functions satisfying certain covariance properties with respect to a subgroup may yield Plancherel formulas for integral transforms with special function kernels. The resulting Plancherel measure can often be alternatively interpreted as the spectral measure for an eigen value problem involving ordinary or partial differential operators.
+
See also the references to [[Fourier transform|Fourier transform]]. In the case of a locally compact unimodular type-I group there is a Plancherel formula quite analogous to (*), cf. [[#References|[a3]]], § 18.8: just replace in (*) $  \sum _  \alpha  n _  \alpha  $
 +
by an integral $  \int _ {\widehat{G}  }  d \nu ( \alpha ) $
 +
over the unitary dual $  \widehat{G}  $
 +
of $  G $.  
 +
In general, this formula is only available in abstract form. It is an important area of research to obtain more information about the Plancherel measure $  \nu $,  
 +
such as its support, its discrete part and its full explicit expression. In the case of a real non-compact semi-simple Lie group this program was successfully completed by Harish-Chandra. More generally, Plancherel formulas can be considered on homogeneous spaces, for instance pseudo-Riemannian ones, cf. [[#References|[a1]]], § II.2. Specialization of Plancherel formulas on groups or homogeneous spaces to functions satisfying certain covariance properties with respect to a subgroup may yield Plancherel formulas for integral transforms with special function kernels. The resulting Plancherel measure can often be alternatively interpreted as the spectral measure for an eigen value problem involving ordinary or partial differential operators.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Flensted-Jensen,  "Analysis on non-Riemannian symmetric spaces" , Amer. Math. Soc.  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Reiter,  "Classical harmonic analysis and locally compact groups" , Clarendon Press  (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276048.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''2''' , Springer  (1979)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Flensted-Jensen,  "Analysis on non-Riemannian symmetric spaces" , Amer. Math. Soc.  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Reiter,  "Classical harmonic analysis and locally compact groups" , Clarendon Press  (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072760/p07276048.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''2''' , Springer  (1979)</TD></TR></table>

Latest revision as of 08:06, 6 June 2020


A formula expressing the invariance of the inner product under Fourier transformation (cf. Fourier transform) on the space $ L _ {2} ( X) $:

$$ \int\limits _ { Y } \widehat{f} _ {1} ( y) \overline{ {\widehat{f} _ {2} ( y) }}\; d \mu ( y) = \int\limits _ { X } f _ {1} ( x) \overline{ {f _ {2} ( x) }}\; d \mu ( x). $$

In the classical case, where $ X = Y = \mathbf R ^ {n} $ is $ n $- dimensional Euclidean space and $ \mu ( x) $ and $ \mu ( y) $ denote $ n $- dimensional Lebesgue measure, the Fourier transformation

$$ f( x) \mapsto \widehat{f} ( y) $$

on $ L _ {2} ( \mathbf R ^ {n} ) $ is a continuous extension of the classical Fourier transformation

$$ g( x) \mapsto \widehat{g} ( y) = \frac{1}{( 2 \pi ) ^ {n/2} } \int\limits _ {\mathbf R ^ {n} } g( x) e ^ {i( x, y) } dx, $$

$$ g \in L _ {1} ( \mathbf R ^ {n} ) ,\ x = ( x _ {1} \dots x _ {n} ) ,\ y = ( y _ {1} \dots y _ {n} ), $$

where $ ( x, y) $ is the inner product in $ \mathbf R ^ {n} $, from the set $ L _ {1} ( \mathbf R ^ {n} ) \cap L _ {2} ( \mathbf R ^ {n} ) $ to the space $ L _ {2} ( \mathbf R ^ {n} ) $.

Plancherel's formula applies also when $ X $ is a locally compact commutative topological group, with $ Y $ its character group, $ x \in X $, $ y \in Y $, $ \mu ( x) $ and $ \mu ( y) $ are correspondingly normalized invariant measures (cf. Invariant measure) on $ X $ and $ Y $, and the Fourier transformation $ f( x) \mapsto \widehat{f} ( y) $ on the space $ L _ {2} ( X) $ is a continuous extension of the mapping

$$ g( x) \mapsto \widehat{g} ( y) = \int\limits _ { X } g( x) y( x) d \mu ( x), $$

$$ g( x) \in L _ {1} ( X) ,\ y( x) \in Y, $$

from the set $ L _ {1} ( X) \cap L _ {2} ( X) $ to the space $ L _ {2} ( Y) $.

Plancherel's formula can be extended to non-commutative topological groups. Let, e.g., $ G $ be a compact Hausdorff group, let $ \mu $ be an invariant measure on it, $ \mu ( G) = 1 $, let $ g \mapsto U _ {g} ^ {( \alpha ) } $ be an irreducible finite-dimensional unitary representation of dimension $ n _ \alpha $ of $ G $ in a Hilbert space (cf. Representation of a compact group), $ g \in G $, $ \alpha = 1, 2 \dots $ $ x( g) \in L _ {2} ( G) $, let

$$ T _ {x} ^ {( \alpha ) } = \int\limits _ { G } x( g) U _ {g} ^ {( \alpha )* } d \mu ( g) $$

(* denotes transition to the adjoint operator), and let $ \mathop{\rm Tr} ( T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } ) $ be the trace of the operator $ T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } $. Then the generalized Plancherel formula is:

$$ \tag{* } \int\limits _ { G } | x( g) | ^ {2} d \mu ( g) = \sum _ \alpha n _ \alpha \mathop{\rm Tr} ( T _ {x} ^ {( \alpha ) } T _ {x} ^ {( \alpha )* } ). $$

References

[1] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian)
[2] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)

Comments

See also the references to Fourier transform. In the case of a locally compact unimodular type-I group there is a Plancherel formula quite analogous to (*), cf. [a3], § 18.8: just replace in (*) $ \sum _ \alpha n _ \alpha $ by an integral $ \int _ {\widehat{G} } d \nu ( \alpha ) $ over the unitary dual $ \widehat{G} $ of $ G $. In general, this formula is only available in abstract form. It is an important area of research to obtain more information about the Plancherel measure $ \nu $, such as its support, its discrete part and its full explicit expression. In the case of a real non-compact semi-simple Lie group this program was successfully completed by Harish-Chandra. More generally, Plancherel formulas can be considered on homogeneous spaces, for instance pseudo-Riemannian ones, cf. [a1], § II.2. Specialization of Plancherel formulas on groups or homogeneous spaces to functions satisfying certain covariance properties with respect to a subgroup may yield Plancherel formulas for integral transforms with special function kernels. The resulting Plancherel measure can often be alternatively interpreted as the spectral measure for an eigen value problem involving ordinary or partial differential operators.

References

[a1] M. Flensted-Jensen, "Analysis on non-Riemannian symmetric spaces" , Amer. Math. Soc. (1986)
[a2] H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)
[a3] J. Dixmier, " algebras" , North-Holland (1977) (Translated from French)
[a4] E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 2 , Springer (1979)
How to Cite This Entry:
Plancherel formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Plancherel_formula&oldid=48184
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article