Namespaces
Variants
Actions

Difference between revisions of "Invertible module"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
A [[Module|module]] $ M $
+
A [[module]] $M$ over a [[commutative ring]] $A$
over a [[Commutative ring|commutative ring]] $ A $
+
for which there exists an $A$-module $N$ such that $M \otimes N $
for which there exists an $ A $-
+
is isomorphic to $A$ (as $A$-modules). A module $M$ is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $A$.  
module $ N $
+
 
such that $ M \otimes N $
+
The classes of isomorphic invertible modules form the Picard group of the ring $A$;  
is isomorphic to $ A $(
+
the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module  $A$.  
as an isomorphism of  $ A $-
+
 
modules). A module $ M $
+
In the non-commutative case, an $(A, B) $-bimodule, where $A$
is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $ A $.  
+
and $B$
The classes of isomorphic invertible modules form the Picard group of the ring $ A $;  
+
are associative rings, is called invertible if there exists a $(B, A) $-
the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module  $ A $.  
+
bimodule $N$ such that
In the non-commutative case, an $ ( A , B ) $-
 
bimodule, where $ A $
 
and $ B $
 
are associative rings, is called invertible if there exists a $ ( B , A ) $-
 
bimodule $ N $
 
such that
 
  
 
$$  
 
$$  
Line 34: Line 28:
 
N \otimes _ {A} M  \simeq  B .
 
N \otimes _ {A} M  \simeq  B .
 
$$
 
$$
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $ G $-
+
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $G$-modules, cf. [[#References|[a1]]], [[#References|[a2]]].
modules, cf. [[#References|[a1]]], [[#References|[a2]]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR>
 +
</table>

Latest revision as of 18:37, 11 April 2023


A module $M$ over a commutative ring $A$ for which there exists an $A$-module $N$ such that $M \otimes N $ is isomorphic to $A$ (as $A$-modules). A module $M$ is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $A$.

The classes of isomorphic invertible modules form the Picard group of the ring $A$; the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $A$.

In the non-commutative case, an $(A, B) $-bimodule, where $A$ and $B$ are associative rings, is called invertible if there exists a $(B, A) $- bimodule $N$ such that

$$ M \otimes _ {B} N \simeq A \ \ \textrm{ and } \ \ N \otimes _ {A} M \simeq B . $$

Comments

The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $G$-modules, cf. [a1], [a2].

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[a1] A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" Proc. London Math. Soc. , 180 (1973) pp. 1–45
[a2] A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" Proc. London Math. Soc. , 180 (1973) pp. 405–434
How to Cite This Entry:
Invertible module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invertible_module&oldid=47426
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article