Namespaces
Variants
Actions

Difference between revisions of "Euler-MacLaurin formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 14: Line 14:
  
 
$$  
 
$$  
\sum _ { k= } p ^ { m- } 1 \phi ( k)  =  \int\limits _ { p } ^ { m }  
+
\sum _ {k=p}^ {m-1} \phi ( k)  =  \int\limits _ { p } ^ { m }  
 
\phi ( t)  dt +
 
\phi ( t)  dt +
 
$$
 
$$
Line 20: Line 20:
 
$$  
 
$$  
 
+  
 
+  
\sum _ {\nu = 1 } ^ { n- } 1
+
\sum _ {\nu = 1 } ^ {n-1}
 
\frac{B _  \nu  }{
 
\frac{B _  \nu  }{
 
\nu ! }
 
\nu ! }
Line 28: Line 28:
  
 
where  $  B _  \nu  $
 
where  $  B _  \nu  $
are the [[Bernoulli numbers|Bernoulli numbers]] and  $  R _ {n} $
+
are the [[Bernoulli numbers]] and  $  R _ {n} $
is the remainder. Using the [[Bernoulli polynomials|Bernoulli polynomials]]  $  b _ {n} ( t) $,  
+
is the remainder. Using the [[Bernoulli polynomials]]  $  b _ {n} ( t) $,  
 
$  b _ {n} ( 0) = B _ {n} $,  
 
$  b _ {n} ( 0) = B _ {n} $,  
 
the remainder can be rewritten in the form
 
the remainder can be rewritten in the form
Line 37: Line 37:
 
\frac{1}{n!}
 
\frac{1}{n!}
 
  \int\limits _ { 0 } ^ { 1 }  
 
  \int\limits _ { 0 } ^ { 1 }  
[ B _ {n} ( t) - B _ {n} ] \sum _ { k= } p ^ { m- } 1 \phi  ^ {(} n)
+
[ B _ {n} ( t) - B _ {n} ] \sum _ {k=p}^ {m-1} \phi  ^ {(} n)
 
( k + 1 - t )  dt .
 
( k + 1 - t )  dt .
 
$$
 
$$
Line 49: Line 49:
 
\frac{B _ {2s} }{( 2 s ) ! }
 
\frac{B _ {2s} }{( 2 s ) ! }
  
\sum _ { k= } p ^ { m- } 1 \phi  ^ {(} 2s) ( k + \theta ) ,\ \  
+
\sum _ { k=p} ^ { m-1} \phi  ^ {( 2s) }( k + \theta ) ,\ \  
 
0 < \theta < 1 .
 
0 < \theta < 1 .
 
$$
 
$$
  
If the derivatives  $  \phi  ^ {(} 2s) ( t) $
+
If the derivatives  $  \phi  ^ {( 2s)} ( t) $
and  $  \phi  ^ {(} 2s+ 1) ( t) $
+
and  $  \phi  ^ {( 2s+ 1)} ( t) $
 
have the same sign and do not change sign on  $  [ p , m ] $,  
 
have the same sign and do not change sign on  $  [ p , m ] $,  
 
then
 
then
Line 61: Line 61:
 
R _ {2s}  =  \theta  
 
R _ {2s}  =  \theta  
 
\frac{B _ {2s} }{( 2 s ) ! }
 
\frac{B _ {2s} }{( 2 s ) ! }
  [ \phi  ^ {(} 2s- 1) ( m) - \phi ^ {( 2s- 1) } ( p) ] ,\  0 \leq  \theta \leq  1 .
+
  [ \phi  ^ {( 2s- 1)} ( m) - \phi ^ {( 2s- 1) } ( p) ] ,\  0 \leq  \theta \leq  1 .
 
$$
 
$$
  
Line 67: Line 67:
  
 
$$  
 
$$  
\lim\limits _ {x \rightarrow \infty }  \phi  ^ {(} 2s- 1) ( x)  =  0 ,
+
\lim\limits _ {x \rightarrow \infty }  \phi  ^ {( 2s- 1)} ( x)  =  0 ,
 
$$
 
$$
  
Line 73: Line 73:
  
 
$$  
 
$$  
\sum _ { k= } p ^ { m- } 1 \phi ( k)  =  c +
+
\sum _ { k= p} ^ { m-1} \phi ( k)  =  c +
 
\int\limits _ { p } ^ { m }  \phi ( t)  dt +
 
\int\limits _ { p } ^ { m }  \phi ( t)  dt +
 
$$
 
$$
Line 79: Line 79:
 
$$  
 
$$  
 
+  
 
+  
\sum _ { k= } 1 ^ { 2s- } 2
+
\sum _ { k= 1} ^ { 2s-   2 }
 
\frac{B _ {k} }{k ! }
 
\frac{B _ {k} }{k ! }
 
  \phi ^ {( k - 1 ) } ( m)
 
  \phi ^ {( k - 1 ) } ( m)
Line 87: Line 87:
 
$$
 
$$
  
This version is used, for example, to derive the [[Stirling formula|Stirling formula]], in which case  $  \phi ( x) =  \mathop{\rm ln}  x $
+
This version is used, for example, to derive the [[Stirling formula]], in which case  $  \phi ( x) =  \mathop{\rm ln}  x $
 
and  $  c $
 
and  $  c $
is the [[Euler constant|Euler constant]]. The formula has also been generalized to multiple sums.
+
is the [[Euler constant]]. The formula has also been generalized to multiple sums.
  
 
The Euler–MacLaurin formula finds application in the approximate calculation of definite integrals, the study of convergence of series, the computation of sums, and the expansion of functions in Taylor series. For example, for  $  m = 1 $,  
 
The Euler–MacLaurin formula finds application in the approximate calculation of definite integrals, the study of convergence of series, the computation of sums, and the expansion of functions in Taylor series. For example, for  $  m = 1 $,  
Line 111: Line 111:
 
+  
 
+  
  
\frac{( - 1 ) ^ {m + 1 } t  ^ {2m+} 2 }{2 \  
+
\frac{( - 1 ) ^ {m + 1 } t  ^ {2m+ 2} }{2 \  
 
\sin ( t / 2) }
 
\sin ( t / 2) }
 
  \int\limits _ { 0 } ^ { 1 }   
 
  \int\limits _ { 0 } ^ { 1 }   
\frac{B _ {2m+} 1 ( t) }{( 2
+
\frac{B _ {2m+ 1} ( t) }{( 2
 
m + 1 ) ! }
 
m + 1 ) ! }
 
  \sin \left ( x -  
 
  \sin \left ( x -  

Latest revision as of 09:18, 6 January 2024


A summation formula that connects the partial sums of a series with the integral and derivatives of its general term:

$$ \sum _ {k=p}^ {m-1} \phi ( k) = \int\limits _ { p } ^ { m } \phi ( t) dt + $$

$$ + \sum _ {\nu = 1 } ^ {n-1} \frac{B _ \nu }{ \nu ! } \{ \phi ^ {( \nu - 1 ) } ( m) - \phi ^ {( \nu - 1 ) } ( p) \} + R _ {n} , $$

where $ B _ \nu $ are the Bernoulli numbers and $ R _ {n} $ is the remainder. Using the Bernoulli polynomials $ b _ {n} ( t) $, $ b _ {n} ( 0) = B _ {n} $, the remainder can be rewritten in the form

$$ R _ {n} = - \frac{1}{n!} \int\limits _ { 0 } ^ { 1 } [ B _ {n} ( t) - B _ {n} ] \sum _ {k=p}^ {m-1} \phi ^ {(} n) ( k + 1 - t ) dt . $$

For $ n = 2s $ the remainder $ R _ {2s} $ can be expressed by means of the Bernoulli numbers:

$$ R _ {2s} = \frac{B _ {2s} }{( 2 s ) ! } \sum _ { k=p} ^ { m-1} \phi ^ {( 2s) }( k + \theta ) ,\ \ 0 < \theta < 1 . $$

If the derivatives $ \phi ^ {( 2s)} ( t) $ and $ \phi ^ {( 2s+ 1)} ( t) $ have the same sign and do not change sign on $ [ p , m ] $, then

$$ R _ {2s} = \theta \frac{B _ {2s} }{( 2 s ) ! } [ \phi ^ {( 2s- 1)} ( m) - \phi ^ {( 2s- 1) } ( p) ] ,\ 0 \leq \theta \leq 1 . $$

If, furthermore,

$$ \lim\limits _ {x \rightarrow \infty } \phi ^ {( 2s- 1)} ( x) = 0 , $$

then the Euler–MacLaurin formula becomes

$$ \sum _ { k= p} ^ { m-1} \phi ( k) = c + \int\limits _ { p } ^ { m } \phi ( t) dt + $$

$$ + \sum _ { k= 1} ^ { 2s- 2 } \frac{B _ {k} }{k ! } \phi ^ {( k - 1 ) } ( m) + \theta \frac{B _ {2s} }{( 2 s ) ! } \phi ^ {( 2 s - 1 ) } ( m) ,\ 0 < \theta < 1 . $$

This version is used, for example, to derive the Stirling formula, in which case $ \phi ( x) = \mathop{\rm ln} x $ and $ c $ is the Euler constant. The formula has also been generalized to multiple sums.

The Euler–MacLaurin formula finds application in the approximate calculation of definite integrals, the study of convergence of series, the computation of sums, and the expansion of functions in Taylor series. For example, for $ m = 1 $, $ p = 0 $, $ n = 2m + 1 $, and $ \phi ( x) = \cos ( x t - t / 2 ) $, it yields the expression

$$ \frac{t}{2} \mathop{\rm cotan} \frac{t}{2} = \sum _ {\nu = 0 } ^ { m } (- 1) ^ \nu \frac{t ^ {2 \nu } }{( 2 \nu ) ! } B _ {2 \nu } + $$

$$ + \frac{( - 1 ) ^ {m + 1 } t ^ {2m+ 2} }{2 \ \sin ( t / 2) } \int\limits _ { 0 } ^ { 1 } \frac{B _ {2m+ 1} ( t) }{( 2 m + 1 ) ! } \sin \left ( x - \frac{1}{2} \right ) t dx . $$

The Euler–MacLaurin formula plays an important role in the study of asymptotic expansions, number-theoretic estimates and finite-difference calculus.

Sometimes the Euler–MacLaurin formula is applied in the form

$$ \sum _ { 0 } ^ { n } \phi _ {n} ( x) = \int\limits _ { 0 } ^ { n } \phi ( x) \ dx + \frac{1}{2} ( \phi _ {0} + \phi _ {n} ) + $$

$$ + \int\limits _ { 0 } ^ { n } \left ( x - [ x] - \frac{1}{2} \right ) \phi ^ \prime ( x) dx . $$

The formula was first obtained by L. Euler [1] as

$$ S = \int\limits t dn + \alpha t + \beta \frac{dt}{dn} + \gamma \frac{d ^ {2} t }{d n ^ {2} } + \delta \frac{d ^ {2} t }{d n ^ {2} } + \epsilon \frac{d ^ {4} t }{d n ^ {4} } + \dots , $$

where $ S $ is the sum of the first terms of the series with general term $ t ( n) $, $ S = t = 0 $ for $ n = 0 $, and the coefficients are determined from the recurrence relations

$$ \alpha = \frac{1}{2} ,\ \beta = \frac \alpha {2!} - \frac{1}{3!} = \frac{1}{12} ,\ \gamma = \frac \beta {2!} - \frac \alpha {3!} + \frac{1}{4!} = 0 , $$

$$ \delta = \frac \gamma {2!} - \frac \beta {3!} + \frac \alpha {4!} - \frac{1}{5!} = - \frac{1}{720} ,\ \epsilon = 0 ,\ \gamma = 0 ,\dots . $$

The formula was later discovered independently by C. MacLaurin [2].

References

[1] L. Euler, Comment. Acad. Sci. Imp. Petrop. , 6 (1738) pp. 68–97
[2] C. MacLaurin, "A treatise of fluxions" , 1–2 , Edinburgh (1742)
[3] G.H. Hardy, "Divergent series" , Clarendon Press (1949)
[4] N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)
[5] A.O. [A.O. Gel'fond] Gelfond, "Differenzenrechnung" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)

Comments

The use of the Euler–MacLaurin sum formula in numerical quadrature is discussed in [a1] and [a2]. By replacing the various derivatives by finite differences the quadrature rules of Bessel, Gauss and Gregory are obtained.

References

[a1] F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)
[a2] J.F. Steffensen, "Interpolation" , Chelsea, reprint (1950)
How to Cite This Entry:
Euler-MacLaurin formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler-MacLaurin_formula&oldid=46856
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article