Namespaces
Variants
Actions

Difference between revisions of "BCI-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m (→‎References: zbl link)
Line 21: Line 21:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy ideals of BCI and MV-algebras"  ''Fuzzy Sets and Systems'' , '''62'''  (1994)  pp. 111–114</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy implicative and Boolean ideals of MV-algebras"  ''Fuzzy Sets and Systems'' , '''66'''  (1994)  pp. 315–327</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 19–22</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Iséki,  "On BCI-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''8'''  (1980)  pp. 125–130</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  K. Iséki,  S. Tanaka,  "An introduction to the theory of BCK-algebras"  ''Math. Japon.'' , '''23'''  (1978)  pp. 1–26</TD></TR>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy ideals of BCI and MV-algebras"  ''Fuzzy Sets and Systems'' , '''62'''  (1994)  pp. 111–114</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy implicative and Boolean ideals of MV-algebras"  ''Fuzzy Sets and Systems'' , '''66'''  (1994)  pp. 315–327</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 19–22 {{ZBL|0156.24812}}</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Iséki,  "On BCI-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''8'''  (1980)  pp. 125–130</TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top">  K. Iséki,  S. Tanaka,  "An introduction to the theory of BCK-algebras"  ''Math. Japon.'' , '''23'''  (1978)  pp. 1–26</TD></TR>
 
</table>
 
</table>
  
 
{{TEX|want}}
 
{{TEX|want}}

Revision as of 07:22, 15 December 2023

Algebras introduced by K. Iséki in [a4] as a generalized version of BCK-algebras (cf. BCK-algebra). The latter were developed by Iséki and S. Tannaka in [a6] to generalize the set difference in set theory, and by Y. Imai and Iséki in [a3] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. Abelian group) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a binary relation $\ast$ and a constant $0$ satisfying

i) ;

ii) ;

iii) $x \ast x = 0$;

iv) $x \ast y = 0$ and $y \ast x = 0$ imply that $x = y$;

v) $x \ast 0 = 0$ implies that $x=0$.

A partial order $\leq$ may be defined by $x \leq y$ if and only if $x \ast y = 0$. A very useful identity satisfied by $X$ is . One can then develop many of the usual algebraic concepts. An ideal is a set with the properties that and that whenever and , then . The ideal is implicative if and imply that . It is known that one always has . An ideal is closed if whenever then . While ideals in general are not subalgebras, closed ideals are. A subalgebra simply means a subset containing and closed under that is itself a BCI-algebra under .

The subset of all elements forms an ideal, called the -radical of . The algebra is a BCK-algebra if and only if , and is -semi-simple if and only if . In the latter case, satisfies the identity for all and . It then follows that one can define an operation on by , and . This makes into an Abelian group with as the identity. Conversely, every Abelian group can be given a BCI-algebra structure by . It follows that the category of Abelian groups is equivalent to the subcategory of the category of BCI-algebras formed by the -semi-simple BCI-algebras. Here, a homomorphism from one BCI-algebra to another is a function satisfying . In general, always contains a -semi-simple BCI-subalgebra, namely its -semi-simple part . Of course, also , since it can be verified easily that the induced partial order in a -semi-simple BCI-algebra is always trivial. Clearly, is -semi-simple if , and is a BCK-algebra if . Note that for a -semi-simple BCI-algebra, the closed ideals are precisely the subgroups of the associated Abelian group structure.

Some of the homological algebra properties of BCI-algebras are known. For example, it is known that a BCI-algebra is injective if and only if it is $p$-semi-simple and its associated Abelian group structure is divisible (cf, also Divisible group).

Fuzzy ideals of BCI-algebras are described in [a1] and [a2].

References

[a1] C.S. Hoo, "Fuzzy ideals of BCI and MV-algebras" Fuzzy Sets and Systems , 62 (1994) pp. 111–114
[a2] C.S. Hoo, "Fuzzy implicative and Boolean ideals of MV-algebras" Fuzzy Sets and Systems , 66 (1994) pp. 315–327
[a3] Y. Imai, K. Iséki, "On axiom systems of propositional calculi, XIV" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 19–22 Zbl 0156.24812
[a4] K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 26–29
[a5] K. Iséki, "On BCI-algebras" Math. Seminar Notes (Kobe University) , 8 (1980) pp. 125–130
[a6] K. Iséki, S. Tanaka, "An introduction to the theory of BCK-algebras" Math. Japon. , 23 (1978) pp. 1–26
How to Cite This Entry:
BCI-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=BCI-algebra&oldid=54783
This article was adapted from an original article by C.S. Hoo (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article