Rectifying plane
The plane of the Frénet frame (cf. Frénet trihedron) of a given point $ A $
on a curve $ \mathbf r = \mathbf r ( t) $(
cf. Line (curve)) which is spanned by the tangent (cf. Tangent line) $ \mathbf t $
and the binormal $ \mathbf b $
to the curve at this point. The equation of the rectifying plane can be written in the form
$$ \left | \begin{array}{cllcllcll} X - x( A) &\left | \begin{array}{} y ^ \prime &z ^ \prime &Y - y( A) &\left | \begin{array}{} z ^ \prime &x ^ \prime &Z - z( A) &\left | \begin{array}{} x ^ \prime &y ^ \prime \\ x ^ \prime ( A) &y ^ {\prime\prime} &z ^ {\prime\prime} \\ \end{array} \\ \end{array} \\ \end{array} \right | &y ^ \prime ( A) &z ^ {\prime\prime} &x ^ {\prime\prime} \right | &z ^ \prime ( A) &x ^ {\prime\prime} &y ^ {\prime\prime} \right | \\ \end{array} \right | = 0, $$
or
$$ ( \mathbf R - \mathbf r ) \mathbf r ^ \prime [ \mathbf r ^ \prime , \mathbf r ^ {\prime\prime} ] = 0, $$
where $ \mathbf r ( t) = \mathbf r ( x( t), y( t), z( t)) $ is the equation of the curve.
Comments
References
[a1] | M. Spivak, "A comprehensive introduction to differential geometry" , 2 , Publish or Perish (1970) pp. 1–5 |
Rectifying plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rectifying_plane&oldid=49393