Multilinear mapping
-
linear mapping, multilinear operator
A mapping f of the direct product \prod _{i=1} ^ {n} E _ {i} of unitary modules E _ {i} ( cf. Unitary module) over a commutative associative ring A with a unit into a certain A - module F which is linear in each argument, i.e. which satisfies the condition
f( x _ {1} \dots x _{i-1} , ay + bz, x _ {i+1} \dots x _ {n} ) =
= \ af( x _ {1} \dots x _{i-1} , y, x _ {i+1} \dots x _ {n} ) +
+ bf ( x _ {i} \dots x _{i-1} , z , x _ {i+1} \dots x _ {n} )
( a, b \in A; \ y, z \in E _ {i} ,\ i = 1 \dots n).
In the case n= 2 ( n= 3 ) one speaks of a bilinear mapping (respectively, a trilinear mapping). Each multilinear mapping
f: \prod _ {i=1} ^ { n } E _ {i} \rightarrow F
defines a unique linear mapping \overline{f}\; of the tensor product \otimes _{i=1} ^ {n} E _ {i} into F such that
\overline{f}\; ( x _ {1} \otimes \dots \otimes x _ {n} ) = \ f( x _ {1} \dots x _ {n} ),\ x _ {i} \in E _ {i} ,
where the correspondence f \mapsto \overline{f}\; is a bijection of the set of multilinear mappings \prod _{i=1} ^ {n} E _ {i} \rightarrow F into the set of all linear mappings \otimes _{i=1} ^ {n} E _ {i} \rightarrow F . The multilinear mappings \prod _{i=1} ^ {n} E _ {i} \rightarrow F naturally form an A - module.
On the A - module L _ {n} ( E, F ) of all n - linear mappings E ^ {n} \rightarrow F there acts the symmetric group S _ {n} :
( sf )( x _ {1} \dots x _ {n} ) = \ f( x _ {s(} 1) \dots x _ {s(} n) ),
where s \in S _ {n} , f \in L _ {n} ( E, F ) , x _ {i} \in E . A multilinear mapping f is called symmetric if sf = f for all s \in S _ {n} , and skew-symmetric if sf = \epsilon ( s) f , where \epsilon ( s) = \pm 1 in accordance with the sign of the permutation s . A multilinear mapping is called sign-varying (or alternating) if f( x _ {1} \dots x _ {n} ) = 0 when x _ {i} = x _ {j} for some i \neq j . Any alternating multilinear mapping is skew-symmetric, while if in F the equation 2y = 0 has the unique solution y = 0 the converse also holds. The symmetric multilinear mappings form a submodule in L _ {n} ( E, F ) that is naturally isomorphic to the module of linear mappings L( S ^ {n} E, F ) , where S ^ {n} E is the n - th symmetric power of E ( see Symmetric algebra). The alternating multilinear mappings form a submodule that is naturally isomorphic to L( \Lambda ^ {n} E, F ) , where \Lambda ^ {n} E is the n - th exterior power of the module E ( see Exterior algebra). The multilinear mapping \alpha _ {n} f = \sum _ {s \in S _ {n} } sf is called the symmetrized multilinear mapping defined by f , while the multilinear mapping \sigma _ {n} f = \sum _ {s \in S _ {n} } \epsilon ( s) sf is called the skew-symmetrized mapping defined by f . Symmetrized (skew-symmetrized) multilinear mappings are symmetric (respectively, alternating), and if in F the equation n!y = c has a unique solution for each c \in F , then the converse is true. A sufficient condition for any alternating multilinear mapping to be a skew-symmetrization is that the module E is free (cf. Free module). For references see Multilinear form.
Multilinear mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multilinear_mapping&oldid=47927