Namespaces
Variants
Actions

Difference between revisions of "Hilbert polynomial"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done)
(→‎References: zbl link)
 
Line 12: Line 12:
 
<table>
 
<table>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Gesammelte Abhandlungen" , '''2''' , Springer  (1933)</TD></TR>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Gesammelte Abhandlungen" , '''2''' , Springer  (1933)</TD></TR>
<TR><TD valign="top">[2]</TD> <TD valign="top">  M. Baldassarri,  "Algebraic varieties" , Springer  (1956)</TD></TR>
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  M. Baldassarri,  "Algebraic varieties" , Springer  (1956) {{ZBL|0075.15901}}</TD></TR>
 
<TR><TD valign="top">[3]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''1''' , Springer  (1975)</TD></TR>
 
<TR><TD valign="top">[3]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''1''' , Springer  (1975)</TD></TR>
 
</table>
 
</table>
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 05:51, 17 April 2024

of a graded module $M = \bigoplus_n M_n$

A polynomial expressing the dimensions of the homogeneous components of the module as a function of $n$ for large natural numbers $n$. More exactly, the following theorem, demonstrated in essence by D. Hilbert, is valid. Let $A = K[X_0,\ldots,X_m]$ be a ring of polynomials over a field $K$, graded so that the $X_i$ are homogeneous elements of the first degree, and let $M = \bigoplus_n M_n$ be a graded $A$-module of finite type; the Hilbert function of $M$ is $h_M(n) = \dim_K M_n$ and there exists a polynomial $P_M(t)$ with rational coefficients such that, for sufficiently large $n$, $P_M(n) = h_M(n) = \dim_K M_n$. This polynomial is called the Hilbert polynomial.

Of greatest interest is the interpretation of the Hilbert polynomial of a graded algebra $R$ which is the quotient ring of the ring $A$ by a homogeneous ideal $I$; in such a case the Hilbert polynomial gives the projective invariants of the projective variety $X = \text{Proj}(R) \subset \mathbf{P}^m$ defined by the ideal $I$. In particular, the degree of $P_R(t)$ coincides with the dimension of $X$, while $P_{\mathrm{A}} = (-1)^{\dim X}(P_R(0)-1)$ is said to be the arithmetic genus of $X$. Hilbert polynomials also serve to express the degree of the imbedding $X \subset \mathbf{P}^m$. The Hilbert polynomial of the ring $R$ is also the name given to the Hilbert polynomial of the projective variety $X$ with respect to the imbedding $X \subset \mathbf{P}^m$. If $\mathcal{O}_X(1)$ is the invertible sheaf corresponding to this imbedding, then $$ P_R(n) = \dim_K H^0(X,\mathcal{O}_X(1)^{{\otimes} n}) $$ for sufficiently large $n$.

References

[1] D. Hilbert, "Gesammelte Abhandlungen" , 2 , Springer (1933)
[2] M. Baldassarri, "Algebraic varieties" , Springer (1956) Zbl 0075.15901
[3] O. Zariski, P. Samuel, "Commutative algebra" , 1 , Springer (1975)
How to Cite This Entry:
Hilbert polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_polynomial&oldid=55723
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article