Difference between revisions of "Bifunctor"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (eqref) |
||
Line 27: | Line 27: | ||
the morphism | the morphism | ||
− | + | \begin{equation} \label{eq1} | |
T( \alpha , \beta ) : \ | T( \alpha , \beta ) : \ | ||
T(A ^ \prime , B) \rightarrow \ | T(A ^ \prime , B) \rightarrow \ | ||
T(A, B ^ \prime ). | T(A, B ^ \prime ). | ||
− | + | \end{equation} | |
The following conditions | The following conditions | ||
− | + | \begin{equation} \label{eq2} | |
− | T(1 _ {A} , 1 _ {B} ) = | + | T(1 _ {A} , 1 _ {B} ) = 1 _ {T (A, B) } , |
− | 1 _ {T (A, B) } , | + | \end{equation} |
− | |||
$$ | $$ | ||
Line 45: | Line 44: | ||
$$ | $$ | ||
− | must also be met. In such a case one says that the functor | + | must also be met. In such a case, one says that the functor $T$ is contravariant with respect to the first argument and covariant with respect to the second. |
− | is contravariant with respect to the first argument and covariant with respect to the second. | ||
====Comments==== | ====Comments==== | ||
− | What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([[#References|[a1]]]), has | + | What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([[#References|[a1]]]), has \eqref{eq1} and \eqref{eq2} replaced by |
− | + | \begin{equation} \label{eq1bis} \tag{1'} | |
T ( \alpha , \beta ): \ | T ( \alpha , \beta ): \ | ||
T (A, B) \rightarrow \ | T (A, B) \rightarrow \ | ||
T (A ^ \prime , B ^ \prime ), | T (A ^ \prime , B ^ \prime ), | ||
− | + | \end{equation} | |
− | + | \begin{equation} \label{eq2bis}\tag{2'} | |
T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha | T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha | ||
^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). | ^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). | ||
− | + | \end{equation} | |
Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument. | Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Mitchell, "Theory of categories" , Acad. Press (1965)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Mitchell, "Theory of categories" , Acad. Press (1965)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:02, 29 March 2024
A mapping $ T: \mathfrak A \times \mathfrak B \rightarrow \mathfrak C $,
defined on the Cartesian product of two categories $ \mathfrak A $
and $ \mathfrak B $
with values in $ \mathfrak C $,
which assigns to each pair of objects $ A \in \mathfrak A $,
$ B \in \mathfrak B $
some object $ C \in \mathfrak C $,
and to each pair of morphisms
$$ \alpha : A \rightarrow A ^ \prime ,\ \ \beta : B \rightarrow B ^ \prime $$
the morphism
\begin{equation} \label{eq1} T( \alpha , \beta ) : \ T(A ^ \prime , B) \rightarrow \ T(A, B ^ \prime ). \end{equation}
The following conditions
\begin{equation} \label{eq2} T(1 _ {A} , 1 _ {B} ) = 1 _ {T (A, B) } , \end{equation}
$$ T ( \alpha ^ \prime \circ \alpha , \beta ^ \prime \circ \beta ) = T ( \alpha , \beta ^ \prime ) \circ T ( \alpha ^ \prime , \beta ), $$
must also be met. In such a case, one says that the functor $T$ is contravariant with respect to the first argument and covariant with respect to the second.
Comments
What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([a1]), has \eqref{eq1} and \eqref{eq2} replaced by
\begin{equation} \label{eq1bis} \tag{1'} T ( \alpha , \beta ): \ T (A, B) \rightarrow \ T (A ^ \prime , B ^ \prime ), \end{equation}
\begin{equation} \label{eq2bis}\tag{2'} T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha ^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). \end{equation}
Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument.
References
[a1] | B. Mitchell, "Theory of categories" , Acad. Press (1965) |
Bifunctor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bifunctor&oldid=55688