Bifunctor
A mapping ,
defined on the Cartesian product of two categories \mathfrak A
and \mathfrak B
with values in \mathfrak C ,
which assigns to each pair of objects A \in \mathfrak A ,
B \in \mathfrak B
some object C \in \mathfrak C ,
and to each pair of morphisms
\alpha : A \rightarrow A ^ \prime ,\ \ \beta : B \rightarrow B ^ \prime
the morphism
\begin{equation} \label{eq1} T( \alpha , \beta ) : \ T(A ^ \prime , B) \rightarrow \ T(A, B ^ \prime ). \end{equation}
The following conditions
\begin{equation} \label{eq2} T(1 _ {A} , 1 _ {B} ) = 1 _ {T (A, B) } , \end{equation}
T ( \alpha ^ \prime \circ \alpha , \beta ^ \prime \circ \beta ) = T ( \alpha , \beta ^ \prime ) \circ T ( \alpha ^ \prime , \beta ),
must also be met. In such a case, one says that the functor T is contravariant with respect to the first argument and covariant with respect to the second.
Comments
What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([a1]), has \eqref{eq1} and \eqref{eq2} replaced by
\begin{equation} \label{eq1bis} \tag{1'} T ( \alpha , \beta ): \ T (A, B) \rightarrow \ T (A ^ \prime , B ^ \prime ), \end{equation}
\begin{equation} \label{eq2bis}\tag{2'} T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha ^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). \end{equation}
Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument.
References
[a1] | B. Mitchell, "Theory of categories" , Acad. Press (1965) |
Bifunctor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bifunctor&oldid=55688