Namespaces
Variants
Actions

Difference between revisions of "Pitman estimator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(latex details)
(latex details)
 
Line 24: Line 24:
  
 
$$  
 
$$  
{\mathsf E} _  \theta  X _ {1}  ^ {2}  =  \int\limits _ {- \infty } ^ { {+ \infty } x  ^ {2} f( x-
+
{\mathsf E} _  \theta  X _ {1}  ^ {2}  =  \int\limits _ {- \infty } ^ { +\infty } x  ^ {2} f( x-
 
\theta )  dx  <  \infty
 
\theta )  dx  <  \infty
 
$$
 
$$
Line 51: Line 51:
  
 
$$  
 
$$  
\widehat \theta  ( X)  =  X _ {(} n1) -  
+
\widehat \theta  ( X)  =  X _ {(n1)} -  
 
\frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n }  f( x+ Y _ {i} )  dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n }  f( x+ Y _ {i} )  dx }
 
\frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n }  f( x+ Y _ {i} )  dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n }  f( x+ Y _ {i} )  dx }
 
  ,
 
  ,
 
$$
 
$$
  
where  $  Y _ {i} = X _ {(} ni) - X _ {(} n1) $,  
+
where  $  Y _ {i} = X _ {(ni)} - X _ {(n1)} $,  
and  $  X _ {(} ni) $
+
and  $  X _ {(ni)} $
 
is the  -
 
is the    i -
 
th [[order statistic]] of the observation vector    X .  
 
th [[order statistic]] of the observation vector    X .  
The Pitman estimator is unbiased (cf. [[Unbiased estimator|Unbiased estimator]]); it is a [[Minimax estimator|minimax estimator]] in the class of all estimators for    \theta
+
The Pitman estimator is unbiased (cf. [[Unbiased estimator]]); it is a [[Minimax estimator|minimax estimator]] in the class of all estimators for    \theta
 
with respect to the quadratic loss function if all equivariant estimators for    \theta
 
with respect to the quadratic loss function if all equivariant estimators for    \theta
 
have finite risk function [[#References|[2]]].
 
have finite risk function [[#References|[2]]].
Line 79: Line 79:
  
 
$$  
 
$$  
\widehat \theta  ( X)  =  X _ {(} n1) -  
+
\widehat \theta  ( X)  =  X _ {(n1)} -  
 
\frac{1}{n}
 
\frac{1}{n}
 
  ,
 
  ,

Latest revision as of 19:05, 17 January 2024


An equivariant estimator for the shift parameter with respect to a group of real shifts, having minimal risk with respect to a quadratic loss function.

Let the components X _ {1} \dots X _ {n} of a random vector X = ( X _ {1} \dots X _ {n} ) be independent random variables having the same probability law, with probability density belonging to the family

\{ f( x- \theta ) , | x | < \infty , \theta \in \Theta =(- \infty , + \infty ) \} ,

and with

{\mathsf E} _ \theta X _ {1} ^ {2} = \int\limits _ {- \infty } ^ { +\infty } x ^ {2} f( x- \theta ) dx < \infty

for any \theta \in \Theta . Also, let G = \{ g \} be the group of real shifts operating in the realization space \mathbf R ^ {1} = (- \infty , + \infty ) of X _ {i} ( i = 1 \dots n) :

G = \{ {g } : {gX _ {i} = X _ {i} + g, | g | < \infty } \} .

In this case, the task of estimating \theta is invariant with respect to the quadratic loss function L( \theta , \widehat \theta ) = ( \theta - \widehat \theta ) ^ {2} if one uses an equivariant estimator \widehat \theta = \widehat \theta ( X) of \theta , i.e. \widehat \theta ( gX) = g \widehat \theta ( X) for all g \in G . E. Pitman [1] has shown that the equivariant estimator \widehat \theta ( X) for the shift parameter \theta with respect to the group G that has minimal risk with respect to the quadratic loss function takes the form

\widehat \theta ( X) = X _ {(n1)} - \frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n } f( x+ Y _ {i} ) dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n } f( x+ Y _ {i} ) dx } ,

where Y _ {i} = X _ {(ni)} - X _ {(n1)} , and X _ {(ni)} is the i - th order statistic of the observation vector X . The Pitman estimator is unbiased (cf. Unbiased estimator); it is a minimax estimator in the class of all estimators for \theta with respect to the quadratic loss function if all equivariant estimators for \theta have finite risk function [2].

Example 1. If

f( x- \theta ) = e ^ {-( x- \theta ) } ,\ \ x \geq \theta ,

i.e. X _ {i} , i = 1 \dots n , has exponential distribution with unknown shift parameter \theta , then the Pitman estimator \widehat \theta ( X) for \theta is

\widehat \theta ( X) = X _ {(n1)} - \frac{1}{n} ,

and its variance is 1/n ^ {2} .

Example 2. If

f( x- \theta ) = \frac{1}{\sqrt {2 \pi } } e ^ {-( x- \theta ) ^ {2} /2 } ,\ \ | x | < \infty ,

i.e. X _ {i} , i = 1 \dots n , has normal distribution N( \theta , 1) with unknown mathematical expectation \theta , then the arithmetic mean

\overline{X}\; = \frac{X _ {1} + \dots + X _ {n} }{n}

is the Pitman estimator.

References

[1] E.J. Pitman, "The estimation of the location and scale parameters of a continuous population of any given form" Biometrika , 30 (1939) pp. 391–421
[2] M.A. Girshick, L.J. Savage, "Bayes and minimax estimates for quadratic loss functions" J. Neyman (ed.) , Proc. 2-nd Berkeley Symp. Math. Statist. Prob. , Univ. California Press (1951) pp. 53–73
[3] S. Zachs, "The theory of statistical inference" , Wiley (1971)
How to Cite This Entry:
Pitman estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pitman_estimator&oldid=55167
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article