Difference between revisions of "Subprojective space"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 74: | Line 74: | ||
$$ | $$ | ||
\theta ds ^ {2} = a _ {\alpha \beta } dx ^ \alpha dx ^ \beta + 2 \ | \theta ds ^ {2} = a _ {\alpha \beta } dx ^ \alpha dx ^ \beta + 2 \ | ||
− | d \lambda dx ^ {n-} | + | d \lambda dx ^ {n-1} + 2 dv dx ^ {n} , |
$$ | $$ | ||
Line 80: | Line 80: | ||
$ \mathop{\rm det} | a _ {\alpha \beta } | \neq 0 $, | $ \mathop{\rm det} | a _ {\alpha \beta } | \neq 0 $, | ||
$ \theta $ | $ \theta $ | ||
− | is a homogeneous function of degree one in $ x ^ {n-} | + | is a homogeneous function of degree one in $ x ^ {n-1} $ |
and $ x ^ {n} $, | and $ x ^ {n} $, | ||
and $ \lambda $ | and $ \lambda $ | ||
Line 89: | Line 89: | ||
\frac{1}{2} | \frac{1}{2} | ||
− | a _ {\alpha \beta } x ^ \alpha x ^ \beta + \lambda x ^ {n-} | + | a _ {\alpha \beta } x ^ \alpha x ^ \beta + \lambda x ^ {n-1} + vx |
^ {n} = 0,\ \ | ^ {n} = 0,\ \ | ||
\alpha , \beta = 1 \dots n- 2 . | \alpha , \beta = 1 \dots n- 2 . | ||
Line 102: | Line 102: | ||
1) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( e _ {1} dz ^ {1 ^ {2} } + \dots + e _ {n} dz ^ {n ^ {2} } ) $, | 1) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( e _ {1} dz ^ {1 ^ {2} } + \dots + e _ {n} dz ^ {n ^ {2} } ) $, | ||
− | 2) $ ds ^ {2} = e ^ {- 2 \mu ( z) } \sum _ {i=} | + | 2) $ ds ^ {2} = e ^ {- 2 \mu ( z) } \sum _ {i=1} ^ {n} ( e _ {i} dz ^ {i ^ {2} } ) $, |
− | $ z = ( \sum _ {i=} | + | $ z = ( \sum _ {i=1} ^ {n} e _ {i} dz ^ {i ^ {2} } ) ^ {1/2} $, |
− | 3) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( 2 dz ^ {1} dz ^ {2} + \sum _ {i=} | + | 3) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( 2 dz ^ {1} dz ^ {2} + \sum _ {i=3} ^ {n} e _ {i} dz ^ {i ^ {2} } ) $, |
$ i = 3 \dots n $ | $ i = 3 \dots n $ | ||
$ ( e _ {i} = \textrm{ const } ) $. | $ ( e _ {i} = \textrm{ const } ) $. | ||
Line 128: | Line 128: | ||
The concept of a subprojective space permits the following generalizations: A space $ A _ {n} $ | The concept of a subprojective space permits the following generalizations: A space $ A _ {n} $ | ||
with an affine connection is called a generalized subprojective space if its geodesic lines lie in Euclidean planes $ E _ {r+} 1 $, | with an affine connection is called a generalized subprojective space if its geodesic lines lie in Euclidean planes $ E _ {r+} 1 $, | ||
− | $ 1 \leq r \leq n- 2 $, | + | $ 1 \leq r \leq n- 2 $, that pass through a fixed plane $ E _ {r-1} $( |
− | that pass through a fixed plane $ E _ {r-} | ||
at a finite or infinite distance). | at a finite or infinite distance). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.F. Kagan, "Subprojective spaces" , Moscow (1961) (In Russian)</TD></TR | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.F. Kagan, "Subprojective spaces" , Moscow (1961) (In Russian)</TD></TR> |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)</TD></TR></table> | |
− | |||
− | |||
− | |||
− |
Latest revision as of 18:59, 11 January 2024
One of the generalizations of spaces of constant curvature (of projective space). One defines a $ k $-
fold projective space with an affine connection and expresses its geodesic lines in some coordinate system by a system of $ ( n- 1) $
equations of which exactly $ k $
are linear. When $ k= n- 2 $,
the geodesic lines are planar, and are situated in two-dimensional Euclidean planes, and the space is said to be subprojective if all these two-dimensional Euclidean planes pass through a common point or are parallel in one direction (the common point is infinitely distant).
Let $ A _ {n} $ be an $ n $- dimensional subprojective space with a torsion-free affine connection. With respect to a projective coordinate system $ x ^ {i} $ of $ A _ {n} $, the coefficients of the connection take the form
$$ \Gamma _ {jk} ^ {i} = x ^ {i} f _ {jk} + \delta _ {k} ^ {i} p _ {j} + \delta _ {j} ^ {i} p _ {k} ,\ \ f _ {jk} = f _ {kj} , $$
where $ \delta _ {j} ^ {i} $ are the Kronecker symbols and
$$ p _ {k} = \frac{1}{2} ( \Gamma _ {kk} ^ {k} - f _ {kk} x ^ {k} ). $$
In this coordinate system, all two-dimensional Euclidean planes on which the geodesic lines of $ A _ {n} $ are situated pass through the coordinate origin.
In general, in a subprojective space $ A _ {n} $ there exists a canonical coordinate system $ x ^ {i} $ in which the coefficients of the connection take the simplest form
$$ \Gamma _ {jk} ^ {i} = x ^ {i} f _ {jk} . $$
A Riemannian subprojective space $ V _ {n} $ is defined in the same way; its metric reduces to one of three possible forms:
$$ ds ^ {2} = g _ {\alpha \gamma } dx ^ \alpha dx ^ \gamma , $$
where
1) $ g _ {ik} = \partial _ {i} \tau \partial _ {k} \tau + ( \lambda / \theta ) \partial _ {ik} ( v/ \lambda ) $,
2) $ g _ {ik} = \partial _ {i} \tau \partial _ {k} \tau + c( \lambda / \theta ) \partial _ {ik} \lambda $, $ c = \textrm{ const } \neq 0 $; here $ \theta $ is an arbitrary function in the coordinates $ x ^ {i} $, $ \theta $ is a function of the variable $ \lambda / \theta $, $ v $ is a quadratic form in the $ x ^ {i} $, $ \lambda $ in 1) is a linear form and in 2) it is the square root of a quadratic form that is not a complete square.
3) The exceptional case
$$ \theta ds ^ {2} = a _ {\alpha \beta } dx ^ \alpha dx ^ \beta + 2 \ d \lambda dx ^ {n-1} + 2 dv dx ^ {n} , $$
where $ a _ {\alpha \beta } = \textrm{ const } $, $ \mathop{\rm det} | a _ {\alpha \beta } | \neq 0 $, $ \theta $ is a homogeneous function of degree one in $ x ^ {n-1} $ and $ x ^ {n} $, and $ \lambda $ and $ v $ are functions related by
$$ \frac{1}{2} a _ {\alpha \beta } x ^ \alpha x ^ \beta + \lambda x ^ {n-1} + vx ^ {n} = 0,\ \ \alpha , \beta = 1 \dots n- 2 . $$
The functions $ \lambda $ and $ v $ are not homogeneous of the first degree.
All three cases can be reduced to a uniform expression by the choice of coordinates $ z ^ {i} $:
1) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( e _ {1} dz ^ {1 ^ {2} } + \dots + e _ {n} dz ^ {n ^ {2} } ) $,
2) $ ds ^ {2} = e ^ {- 2 \mu ( z) } \sum _ {i=1} ^ {n} ( e _ {i} dz ^ {i ^ {2} } ) $, $ z = ( \sum _ {i=1} ^ {n} e _ {i} dz ^ {i ^ {2} } ) ^ {1/2} $,
3) $ ds ^ {2} = e ^ {- 2 \mu ( z ^ {1} ) } ( 2 dz ^ {1} dz ^ {2} + \sum _ {i=3} ^ {n} e _ {i} dz ^ {i ^ {2} } ) $, $ i = 3 \dots n $ $ ( e _ {i} = \textrm{ const } ) $. All Riemannian subprojective spaces $ V _ {n} $ are conformal Euclidean spaces (cf. Conformal Euclidean space). Riemannian subprojective spaces belong to the class of semi-reducible Riemannian spaces and their metrics have a special structure.
Tensor criteria for conformal Euclidean subprojective spaces exist, distinguishing them from the class of all conformal Euclidean spaces. Every subprojective space $ V _ {n} $( apart from the case 3)) can be realized as a hypersurface in a Euclidean space $ E _ {n+} 1 $ in the case 1), or as a hypersurface of rotation in $ E _ {n+} 1 $ in the case 2). The converse is also true: Every hypersurface of rotation around a non-isotropic axis in a Euclidean space $ E _ {n+} 1 $, $ n > 2 $, is a Riemannian subprojective space with a metric of the form 2).
Motions in Riemannian subprojective spaces are defined in the usual way. The subprojective spaces $ V _ {n} $ are characterized by the fact that if $ V _ {n} $ is not a space of constant curvature, then it permits a maximal intransitive group of motions of order $ n( n- 1)/2 $, and, conversely, every Riemannian space $ V _ {n} $ that permits a maximal intransitive group of order $ n( n- 1)/2 $ is a subprojective space. Riemannian subprojective spaces $ V _ {n} $ are maximally-mobile non-Einsteinian spaces (spaces of constant curvature occupy the same position among the Einstein spaces).
The concept of a subprojective space permits the following generalizations: A space $ A _ {n} $ with an affine connection is called a generalized subprojective space if its geodesic lines lie in Euclidean planes $ E _ {r+} 1 $, $ 1 \leq r \leq n- 2 $, that pass through a fixed plane $ E _ {r-1} $( at a finite or infinite distance).
References
[1] | V.F. Kagan, "Subprojective spaces" , Moscow (1961) (In Russian) |
[a1] | J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German) |
Subprojective space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Subprojective_space&oldid=54973