Namespaces
Variants
Actions

Difference between revisions of "Separable semi-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
(→‎References: zbl link)
 
Line 3: Line 3:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.H. Clifford,  G.B. Preston,  "The algebraic theory of semigroups" , '''1''' , Amer. Math. Soc.  (1961)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.H. Clifford,  G.B. Preston,  "The algebraic theory of semigroups" , '''1''' , Amer. Math. Soc.  (1961) {{ZBL|0111.03403}}</TD></TR></table>

Latest revision as of 17:58, 22 December 2023

A semi-group in which $x^2=xy=y^2$ for elements $x$, $y$ implies that $x=y$. If a semi-group $S$ has a partition into sub-semi-groups that satisfy the cancellation law, then $S$ is separable. For commutative semi-groups the converse holds; moreover, any commutative separable semi-group can be expanded into a band of semi-groups (trivially into a semi-lattice) with the cancellation law. A commutative semi-group is separable if and only if it can be imbedded in a Clifford semi-group. A periodic semi-group is separable if and only if it is a Clifford semi-group. A commutative semi-group $S$ is separable if and only if its characters separate the elements of $S$.

References

[1] A.H. Clifford, G.B. Preston, "The algebraic theory of semigroups" , 1 , Amer. Math. Soc. (1961) Zbl 0111.03403
How to Cite This Entry:
Separable semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Separable_semi-group&oldid=54799
This article was adapted from an original article by L.N. Shevrin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article