Namespaces
Variants
Actions

Difference between revisions of "Normal matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Special matrices)
(isbn)
 
Line 8: Line 8:
  
 
====References====
 
====References====
* Lloyd N. Trefethen, David Bau III, ''Numerical Linear Algebra'' SIAM (1997) ISBN 0898713617
+
* Lloyd N. Trefethen, David Bau III, ''Numerical Linear Algebra'' SIAM (1997) {{ISBN|0898713617}}
  
 
[[Category:Special matrices]]
 
[[Category:Special matrices]]

Latest revision as of 05:42, 22 April 2023

A square complex matrix $A$ that commutes with its adjoint matrix $A^*$: that is, $AA^*=A^*A$.

Comments

See also Normal operator.

The eigenvectors of a normal matrix form an orthonormal system. A matrix $A$ is normal if and only if it is unitarily similar to a diagonal matrix: $\Delta = U^{-1} A U$ with $u$ a unitary matrix.

References

  • Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra SIAM (1997) ISBN 0898713617
How to Cite This Entry:
Normal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_matrix&oldid=53844