Namespaces
Variants
Actions

Difference between revisions of "Normal bundle"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
Line 61: Line 61:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" ''J. Soviet Math.'' , '''14''' : 3 (1980) pp. 1363–1406 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''15''' (1977) pp. 93–156 {{MR|}} {{ZBL|0449.32020}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) {{MR|0440554}} {{ZBL|0298.57008}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian) {{MR|759162}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" ''J. Soviet Math.'' , '''14''' : 3 (1980) pp. 1363–1406 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''15''' (1977) pp. 93–156 {{MR|}} {{ZBL|0449.32020}} </TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) {{MR|0440554}} {{ZBL|0298.57008}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian) {{MR|759162}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) {{MR|0448362}} {{ZBL|0356.57001}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR>
====Comments====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) {{MR|0039258}} {{ZBL|0054.07103}} </TD></TR></table>
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) {{MR|0039258}} {{ZBL|0054.07103}} </TD></TR></table>
 

Latest revision as of 06:02, 18 April 2023


of a submanifold

The vector bundle consisting of tangent vectors to the ambient manifold that are normal to the submanifold. If is a Riemannian manifold, Y is an (immersed) submanifold of it, T _ {X} and T _ {Y} are the tangent bundles over X and Y ( cf. Tangent bundle), then the normal bundle N _ {Y/X} of Y is the subbundle in T _ {X} \mid _ {Y} consisting of the vectors u \in T _ {X,y } , y \in Y , that are orthogonal to T _ {Y,y} .

With the help of normal bundles one constructs, for example, tubular neighbourhoods of submanifolds (cf. Tubular neighbourhood). The normal bundle over Y , regarded up to equivalence, does not depend on the choice of the Riemannian metric on X , since it can be defined without recourse to the metric as the quotient bundle T _ {X} \mid _ {Y} / T _ {Y} of the tangent bundle T _ {X} restricted to Y by the vector bundle T _ {Y} . Somewhat more general is the construction of the normal bundle of an arbitrary immersion (cf. Immersion of a manifold) f: Y \rightarrow X of differentiable manifolds:

N _ {Y/X} = \ f ^ { * } T _ {X} / T _ {Y} .

Similarly one defines the normal bundle N _ {Y/X} of a non-singular algebraic subvariety Y in a non-singular algebraic variety \overline{X}\; or that of an analytic submanifold Y in an analytic manifold X ; it is an algebraic (or analytic) vector bundle over Y of rank \mathop{\rm codim} Y . In particular, if \mathop{\rm codim} Y = 1 , then N _ {Y/X} is isomorphic to the restriction to Y of the bundle over X that determines the divisor Y .

When Y is an analytic subspace of an analytic space ( X, {\mathcal O} _ {X} ) , the normal bundle of Y is sometimes defined as the analytic family of vector spaces N _ {Y/X} \rightarrow Y dual to the conormal sheaf N _ {Y/X} ^ {*} ( see Normal sheaf). For applications of normal bundles to the problem of contractibility of submanifolds see Exceptional analytic set; Exceptional subvariety.

References

[1] A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" J. Soviet Math. , 14 : 3 (1980) pp. 1363–1406 Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 15 (1977) pp. 93–156 Zbl 0449.32020
[2] J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) MR0440554 Zbl 0298.57008
[3] V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian) MR759162
[4] M.W. Hirsch, "Differential topology" , Springer (1976) MR0448362 Zbl 0356.57001
[5] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[a1] N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) MR0039258 Zbl 0054.07103
How to Cite This Entry:
Normal bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_bundle&oldid=53836
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article