Namespaces
Variants
Actions

Difference between revisions of "Universal quadratic form"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
m (isbn)
 
Line 4: Line 4:
  
 
====References====
 
====References====
* Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'',  Graduate Studies in Mathematics '''67''',  American Mathematical Society (2005) ISBN 0-8218-1095-2 {{ZBL|1068.11023}} {{MR|2104929 }}
+
* Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'',  Graduate Studies in Mathematics '''67''',  American Mathematical Society (2005) {{ISBN|0-8218-1095-2}} {{ZBL|1068.11023}} {{MR|2104929 }}
* A. R. Rajwade, ''Squares'', London Mathematical Society Lecture Note Series '''171''' Cambridge University Press (1993) ISBN 0-521-42668-5 {{ZBL|0785.11022}}
+
* A. R. Rajwade, ''Squares'', London Mathematical Society Lecture Note Series '''171''' Cambridge University Press (1993) {{ISBN|0-521-42668-5}} {{ZBL|0785.11022}}

Latest revision as of 07:52, 19 March 2023

2020 Mathematics Subject Classification: Primary: 15A63 Secondary: 11E04 [MSN][ZBL]

A quadratic form over a field $F$ which represents each element of $F$.

References

  • Tsit Yuen Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society (2005) ISBN 0-8218-1095-2 Zbl 1068.11023 MR2104929
  • A. R. Rajwade, Squares, London Mathematical Society Lecture Note Series 171 Cambridge University Press (1993) ISBN 0-521-42668-5 Zbl 0785.11022
How to Cite This Entry:
Universal quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_quadratic_form&oldid=52944