Difference between revisions of "Universal quadratic form"
From Encyclopedia of Mathematics
m (better) |
m (isbn) |
||
Line 4: | Line 4: | ||
====References==== | ====References==== | ||
− | * Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'', Graduate Studies in Mathematics '''67''', American Mathematical Society (2005) ISBN 0-8218-1095-2 {{ZBL|1068.11023}} {{MR|2104929 }} | + | * Tsit Yuen Lam, ''Introduction to Quadratic Forms over Fields'', Graduate Studies in Mathematics '''67''', American Mathematical Society (2005) {{ISBN|0-8218-1095-2}} {{ZBL|1068.11023}} {{MR|2104929 }} |
− | * A. R. Rajwade, ''Squares'', London Mathematical Society Lecture Note Series '''171''' Cambridge University Press (1993) ISBN 0-521-42668-5 {{ZBL|0785.11022}} | + | * A. R. Rajwade, ''Squares'', London Mathematical Society Lecture Note Series '''171''' Cambridge University Press (1993) {{ISBN|0-521-42668-5}} {{ZBL|0785.11022}} |
Latest revision as of 07:52, 19 March 2023
2020 Mathematics Subject Classification: Primary: 15A63 Secondary: 11E04 [MSN][ZBL]
A quadratic form over a field $F$ which represents each element of $F$.
References
- Tsit Yuen Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics 67, American Mathematical Society (2005) ISBN 0-8218-1095-2 Zbl 1068.11023 MR2104929
- A. R. Rajwade, Squares, London Mathematical Society Lecture Note Series 171 Cambridge University Press (1993) ISBN 0-521-42668-5 Zbl 0785.11022
How to Cite This Entry:
Universal quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_quadratic_form&oldid=52944
Universal quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_quadratic_form&oldid=52944