Namespaces
Variants
Actions

Difference between revisions of "Mathieu group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 41: Line 41:
 
  l  
 
  l  
 
\end{array}
 
\end{array}
  \right )  ^ {-} 1 } {\left ( \begin{array}{c}
+
  \right )  ^ {-1} } {\left ( \begin{array}{c}
 
n \\
 
n \\
 
  l  
 
  l  
Line 65: Line 65:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Mathieu,  "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables"  ''J. Math. Pures Appl.'' , '''6'''  (1861)  pp. 241–323</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Mathieu,  "Sur la fonction cinq fois transitive des 24 quantités"  ''J. Math. Pures Appl.'' , '''18'''  (1873)  pp. 25–46</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  E. Witt,  "Die <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277027.png" />-fach transitiven Gruppen von Matthieu"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 256–264</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  E. Witt,  "Ueber Steinersche Systeme"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 265–275</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Mazurov,  "Finite groups"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 5–56  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Mathieu,  "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables"  ''J. Math. Pures Appl.'' , '''6'''  (1861)  pp. 241–323</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Mathieu,  "Sur la fonction cinq fois transitive des 24 quantités"  ''J. Math. Pures Appl.'' , '''18'''  (1873)  pp. 25–46</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  E. Witt,  "Die $5$-fach transitiven Gruppen von Matthieu"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 256–264</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  E. Witt,  "Ueber Steinersche Systeme"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 265–275</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Mazurov,  "Finite groups"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 5–56  (In Russian)</TD></TR></table>
  
 
====Comments====
 
====Comments====

Latest revision as of 14:51, 14 January 2021


A finite group isomorphic to one of the five groups discovered by E. Mathieu . The series of Mathieu groups consists of the groups denoted by

$$ M _ {11} , M _ {12} , M _ {22} , M _ {23} , M _ {24} . $$

They are representable as permutation groups (cf. Permutation group) on sets with 11, 12, 22, 23, and 24 elements, respectively. The groups $ M _ {12} $ and $ M _ {24} $ are five-fold transitive. $ M _ {11} $ is realized naturally as the stabilizer in $ M _ {12} $ of an element of the set on which $ M _ {12} $ acts; similarly, $ M _ {23} $ and $ M _ {22} $ are stabilizers of elements of $ M _ {24} $ and $ M _ {23} $, respectively. The Mathieu groups have the respective orders

$$ 7 920 , 95 040 , 443 520 , 10 200 960 , 244 823 040. $$

When considering a Mathieu group, one often uses (see ) its representation as the group of automorphisms of the corresponding Steiner system $ S( l, m, n) $, i.e. of the set of $ n $ elements in which there is distinguished a system of

$$ {\left ( \begin{array}{c} m \\ l \end{array} \right ) ^ {-1} } {\left ( \begin{array}{c} n \\ l \end{array} \right ) } $$

subsets, called blocks, consisting of $ m $ elements of the set, and such that every set of $ l $ elements is contained in one and only one block. An automorphism of a Steiner system is defined as a permutation of the set of its elements which takes blocks into blocks. The list of Mathieu groups and corresponding Steiner systems for which they are automorphism groups is as follows: $ M _ {11} $— $ S( 4, 5, 11) $; $ M _ {12} $— $ S( 5, 6, 12) $; $ M _ {22} $— $ S( 3, 6, 22) $; $ M _ {23} $— $ S( 4, 7, 23) $; $ M _ {24} $— $ S( 5, 8, 24) $.

The Mathieu groups were the first (and for over 80 years the only) known sporadic finite simple groups (cf. also Sporadic simple group).

References

[1a] E. Mathieu, "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables" J. Math. Pures Appl. , 6 (1861) pp. 241–323
[1b] E. Mathieu, "Sur la fonction cinq fois transitive des 24 quantités" J. Math. Pures Appl. , 18 (1873) pp. 25–46
[2a] E. Witt, "Die $5$-fach transitiven Gruppen von Matthieu" Abh. Math. Sem. Univ. Hamburg , 12 (1938) pp. 256–264
[2b] E. Witt, "Ueber Steinersche Systeme" Abh. Math. Sem. Univ. Hamburg , 12 (1938) pp. 265–275
[3] V.D. Mazurov, "Finite groups" Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 14 (1976) pp. 5–56 (In Russian)

Comments

For more information (e.g. character tables and maximal subgroups) see [a1].

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
How to Cite This Entry:
Mathieu group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mathieu_group&oldid=51328
This article was adapted from an original article by S.P. Strunkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article