Namespaces
Variants
Actions

Difference between revisions of "Pontryagin square"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
Line 12: Line 12:
  
 
A [[Cohomology operation|cohomology operation]]  $  {\mathcal P} _ {2} $
 
A [[Cohomology operation|cohomology operation]]  $  {\mathcal P} _ {2} $
of type  $  ( \mathbf Z _ {2  ^ {k}  } , 2n ;  \mathbf Z _ {2  ^ {k+} 1 } , 4n ) $,  
+
of type  $  ( \mathbf Z _ {2  ^ {k}  } , 2n ;  \mathbf Z _ {2  ^ {k+1} } , 4n ) $,  
 
i.e. a functorial mapping
 
i.e. a functorial mapping
  
 
$$  
 
$$  
 
{\mathcal P} _ {2} :  H  ^ {2n} ( X , Y ;  \mathbf Z _ {2  ^ {k}  } )  \rightarrow  H  ^ {4n}
 
{\mathcal P} _ {2} :  H  ^ {2n} ( X , Y ;  \mathbf Z _ {2  ^ {k}  } )  \rightarrow  H  ^ {4n}
( X , Y ;  \mathbf Z _ {2  ^ {k+} 1 } ) ,
+
( X , Y ;  \mathbf Z _ {2  ^ {k+1} } ) ,
 
$$
 
$$
  
Line 28: Line 28:
  
 
1)  $  {\mathcal P} _ {2} ( u + v ) = {\mathcal P} _ {2} u + {\mathcal P} _ {2} v + i ( u v ) $,  
 
1)  $  {\mathcal P} _ {2} ( u + v ) = {\mathcal P} _ {2} u + {\mathcal P} _ {2} v + i ( u v ) $,  
where  $  i :  \mathbf Z _ {2  ^ {k}  } \rightarrow \mathbf Z _ {2  ^ {k+} 1 } $
+
where  $  i :  \mathbf Z _ {2  ^ {k}  } \rightarrow \mathbf Z _ {2  ^ {k+1} } $
 
is the natural imbedding.
 
is the natural imbedding.
  
 
2)  $  \rho {\mathcal P} _ {2} u = u  ^ {2} $
 
2)  $  \rho {\mathcal P} _ {2} u = u  ^ {2} $
 
and  $  {\mathcal P} _ {2} \rho u = u  ^ {2} $,  
 
and  $  {\mathcal P} _ {2} \rho u = u  ^ {2} $,  
where  $  \rho :  H  ^ {*} ( X , Y ;  \mathbf Z _ {2  ^ {k+} 1 } ) \rightarrow H  ^ {*} ( X , Y ;  \mathbf Z _ {2  ^ {k}  } ) $
+
where  $  \rho :  H  ^ {*} ( X , Y ;  \mathbf Z _ {2  ^ {k+1} } ) \rightarrow H  ^ {*} ( X , Y ;  \mathbf Z _ {2  ^ {k}  } ) $
 
is the quotient homomorphism modulo  $  2  ^ {k} $.
 
is the quotient homomorphism modulo  $  2  ^ {k} $.
  
 
3)  $  {\mathcal P} _ {2} \Sigma = \Sigma {\mathcal P} $,  
 
3)  $  {\mathcal P} _ {2} \Sigma = \Sigma {\mathcal P} $,  
where  $  \Sigma :  H  ^ {2n-} 1 ( X ;  G ) \rightarrow H  ^ {2n} ( \Sigma X ;  G ) $
+
where  $  \Sigma :  H  ^ {2n-1} ( X ;  G ) \rightarrow H  ^ {2n} ( \Sigma X ;  G ) $
 
is the [[Suspension|suspension]] mapping and  $  {\mathcal P} $
 
is the [[Suspension|suspension]] mapping and  $  {\mathcal P} $
 
is the [[Postnikov square|Postnikov square]] (in other words, the cohomology suspension of  $  {\mathcal P} _ {2} $
 
is the [[Postnikov square|Postnikov square]] (in other words, the cohomology suspension of  $  {\mathcal P} _ {2} $
Line 44: Line 44:
  
 
$$  
 
$$  
{\mathcal P} _ {2} :  K ( \mathbf Z _ {2  ^ {k}  } , 2n )  \rightarrow  K ( \mathbf Z _ {2  ^ {k+} 1 } , 4n )
+
{\mathcal P} _ {2} :  K ( \mathbf Z _ {2  ^ {k}  } , 2n )  \rightarrow  K ( \mathbf Z _ {2  ^ {k+1} } , 4n )
 
$$
 
$$
  
Line 50: Line 50:
  
 
$$  
 
$$  
{\mathcal P} :  K ( \mathbf Z _ {2  ^ {k}  } , 2n - 1 )  \rightarrow  K ( \mathbf Z _ {2  ^ {k+} 1 } ,\  
+
{\mathcal P} :  K ( \mathbf Z _ {2  ^ {k}  } , 2n - 1 )  \rightarrow  K ( \mathbf Z _ {2  ^ {k+1} } ,\  
 
4n - 1 )
 
4n - 1 )
 
$$
 
$$
Line 60: Line 60:
 
$$  
 
$$  
 
{\mathcal P} _ {2} \{ u \}  =  \{ u \cup _ {0} u + u \cup _ {1} \delta u \}
 
{\mathcal P} _ {2} \{ u \}  =  \{ u \cup _ {0} u + u \cup _ {1} \delta u \}
   \mathop{\rm mod}  2  ^ {k+} 1 ,
+
   \mathop{\rm mod}  2  ^ {k+1} ,
 
$$
 
$$
  
Line 69: Line 69:
  
 
There exists (see [[#References|[5]]], [[#References|[6]]]) a generalization of the Pontryagin square to the case when  $  p $
 
There exists (see [[#References|[5]]], [[#References|[6]]]) a generalization of the Pontryagin square to the case when  $  p $
is an arbitrary odd prime number. This generalization is a cohomology operation of type  $  ( \mathbf Z _ {p  ^ {k}  } , 2n ;  \mathbf Z _ {p  ^ {k+} 1 } , 2pn ) $
+
is an arbitrary odd prime number. This generalization is a cohomology operation of type  $  ( \mathbf Z _ {p  ^ {k}  } , 2n ;  \mathbf Z _ {p  ^ {k+1} } , 2pn ) $
 
and is called the  $  p $-
 
and is called the  $  p $-
 
th Pontryagin power  $  {\mathcal P} _ {p} $.  
 
th Pontryagin power  $  {\mathcal P} _ {p} $.  
Line 84: Line 84:
 
\end{array}
 
\end{array}
 
  \right )
 
  \right )
u  ^ {i} v  ^ {p-} 1 \right ) ,
+
u  ^ {i} v  ^ {p-1} \right ) ,
 
$$
 
$$
  
where  $  i :  \mathbf Z _ {p  ^ {k}  } \rightarrow \mathbf Z _ {p  ^ {k+} 1 } $
+
where  $  i :  \mathbf Z _ {p  ^ {k}  } \rightarrow \mathbf Z _ {p  ^ {k+1} } $
 
is the natural imbedding; and
 
is the natural imbedding; and
  
Line 94: Line 94:
 
$$
 
$$
  
where  $  \rho :  H  ^ {*} ( X , Y ;  \mathbf Z _ {p  ^ {k+} 1 } ) \rightarrow H  ^ {*} ( X , Y ;  \mathbf Z _ {p  ^ {k}  } ) $
+
where  $  \rho :  H  ^ {*} ( X , Y ;  \mathbf Z _ {p  ^ {k+1} } ) \rightarrow H  ^ {*} ( X , Y ;  \mathbf Z _ {p  ^ {k}  } ) $
 
is the quotient homomorphism modulo  $  p  ^ {k} $
 
is the quotient homomorphism modulo  $  p  ^ {k} $
 
generalizing the corresponding formulas for  $  {\mathcal P} _ {2} $.  
 
generalizing the corresponding formulas for  $  {\mathcal P} _ {2} $.  

Revision as of 11:24, 10 August 2020


A cohomology operation $ {\mathcal P} _ {2} $ of type $ ( \mathbf Z _ {2 ^ {k} } , 2n ; \mathbf Z _ {2 ^ {k+1} } , 4n ) $, i.e. a functorial mapping

$$ {\mathcal P} _ {2} : H ^ {2n} ( X , Y ; \mathbf Z _ {2 ^ {k} } ) \rightarrow H ^ {4n} ( X , Y ; \mathbf Z _ {2 ^ {k+1} } ) , $$

defined for any pair of topological spaces $ ( X , Y ) $ and such that for any continuous mapping $ f : ( X , Y ) \rightarrow ( X ^ \prime , Y ^ \prime ) $ the equality $ f ^ { * } {\mathcal P} _ {2} = {\mathcal P} _ {2} f ^ { * } $( naturality) holds.

Pontryagin squares have the following properties:

1) $ {\mathcal P} _ {2} ( u + v ) = {\mathcal P} _ {2} u + {\mathcal P} _ {2} v + i ( u v ) $, where $ i : \mathbf Z _ {2 ^ {k} } \rightarrow \mathbf Z _ {2 ^ {k+1} } $ is the natural imbedding.

2) $ \rho {\mathcal P} _ {2} u = u ^ {2} $ and $ {\mathcal P} _ {2} \rho u = u ^ {2} $, where $ \rho : H ^ {*} ( X , Y ; \mathbf Z _ {2 ^ {k+1} } ) \rightarrow H ^ {*} ( X , Y ; \mathbf Z _ {2 ^ {k} } ) $ is the quotient homomorphism modulo $ 2 ^ {k} $.

3) $ {\mathcal P} _ {2} \Sigma = \Sigma {\mathcal P} $, where $ \Sigma : H ^ {2n-1} ( X ; G ) \rightarrow H ^ {2n} ( \Sigma X ; G ) $ is the suspension mapping and $ {\mathcal P} $ is the Postnikov square (in other words, the cohomology suspension of $ {\mathcal P} _ {2} $ is $ {\mathcal P} $). If

$$ {\mathcal P} _ {2} : K ( \mathbf Z _ {2 ^ {k} } , 2n ) \rightarrow K ( \mathbf Z _ {2 ^ {k+1} } , 4n ) $$

and

$$ {\mathcal P} : K ( \mathbf Z _ {2 ^ {k} } , 2n - 1 ) \rightarrow K ( \mathbf Z _ {2 ^ {k+1} } ,\ 4n - 1 ) $$

are the representing mappings, then $ \Omega {\mathcal P} _ {2} = {\mathcal P} $.

The properties 1), 2) uniquely characterize the Pontryagin square and thus can be taken as an axiomatic definition of it. Constructively the Pontryagin square is defined by the formula

$$ {\mathcal P} _ {2} \{ u \} = \{ u \cup _ {0} u + u \cup _ {1} \delta u \} \mathop{\rm mod} 2 ^ {k+1} , $$

where $ u \in C ^ {2n} ( X ; \mathbf Z ) $ is a cocycle modulo $ 2 ^ {k} $( for the $ \cup _ {i} $- products see Steenrod square).

There exists (see [5], [6]) a generalization of the Pontryagin square to the case when $ p $ is an arbitrary odd prime number. This generalization is a cohomology operation of type $ ( \mathbf Z _ {p ^ {k} } , 2n ; \mathbf Z _ {p ^ {k+1} } , 2pn ) $ and is called the $ p $- th Pontryagin power $ {\mathcal P} _ {p} $. The operation $ {\mathcal P} _ {p} $ is uniquely defined by the following formulas:

$$ {\mathcal P} _ {p} ( u + v ) = {\mathcal P} _ {p} u + {\mathcal P} _ {p} v + i \left ( \sum _ { i= } 1 ^ { p- } 1 \frac{1}{p} \left ( \begin{array}{c} p \\ i \end{array} \right ) u ^ {i} v ^ {p-1} \right ) , $$

where $ i : \mathbf Z _ {p ^ {k} } \rightarrow \mathbf Z _ {p ^ {k+1} } $ is the natural imbedding; and

$$ \rho {\mathcal P} _ {p} u = u ^ {p} \ \textrm{ and } \ {\mathcal P} _ {p} \rho u = u ^ {p} , $$

where $ \rho : H ^ {*} ( X , Y ; \mathbf Z _ {p ^ {k+1} } ) \rightarrow H ^ {*} ( X , Y ; \mathbf Z _ {p ^ {k} } ) $ is the quotient homomorphism modulo $ p ^ {k} $ generalizing the corresponding formulas for $ {\mathcal P} _ {2} $. The analogue of formula 3) for $ {\mathcal P} _ {p} $ has the form $ {\mathcal P} _ {p} \Sigma = 0 $, which means that the cohomology suspension of $ {\mathcal P} _ {p} $ for $ p > 2 $ is zero. For $ p > 2 $ the equality $ {\mathcal P} _ {p} ( u v ) = ( {\mathcal P} _ {p} u ) ( {\mathcal P} _ {p} v ) $ holds, the multiplication may be taken both as outer ( $ \times $- multiplication) or inner ( $ \cup $- multiplication). For $ p = 2 $ the corresponding equality is valid only up to summands of order 2.

In the most general way the Pontryagin square is defined for cohomology with coefficients in an arbitrary finitely-generated Abelian group $ \pi $( see [2], [3]). In final form this generalization is as follows (see [6]). The Pontryagin square is a ring homomorphism

$$ {\mathcal P} ^ {*} : \Gamma ( H ^ {2n} ( X ; \pi ) ) \rightarrow H ^ {*} ( X ; \Gamma ( \pi ) ) , $$

where $ \Gamma $ is a functor which associates a ring with divided powers to an Abelian group. For $ \pi = \mathbf Z _ {p} $, the $ p $- th component of this homomorphism coincides with the $ p $- th Pontryagin power $ {\mathcal P} _ {p} $( for $ p= 2 $ with the Pontryagin square $ {\mathcal P} _ {2} $).

References

[1] L.S. Pontryagin, "Mappings of a 3-dimensional sphere into an -dimensional complex" Dokl. Akad. Nauk SSSR , 34 (1942) pp. 35–37 (In Russian)
[2] V.G. Boltyanskii, "The homotopy theory of continuous mapping and vector fields" , Moscow (1955) (In Russian)
[3] M.M. Postnikov, "The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension" Dokl. Akad. Nauk SSSR , 64 : 4 (1949) pp. 461–462 (In Russian)
[4] W. Browder, E. Thomas, "Axioms for the generalized Pontryagin cohomology operations" Quart. J. Math. , 13 (1962) pp. 55–60
[5] E. Thomas, "A generalization of the Pontrjagin square cohomology operation" Proc. Nat. Acad. Sci. USA , 42 (1956) pp. 266–269
[6] E. Thomas, "The generalized Pontryagin cohomology operations and rings with divided powers" , Amer. Math. Soc. (1957)

Comments

For a definition of $ \Gamma ( \pi ) $ see Ring with divided powers.

How to Cite This Entry:
Pontryagin square. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_square&oldid=50904
This article was adapted from an original article by S.N. MalyginM.M. Postnikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article