Difference between revisions of "Sum function of a function"
m (→Comments: link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0910801.png | ||
+ | $#A+1 = 66 n = 0 | ||
+ | $#C+1 = 66 : ~/encyclopedia/old_files/data/S091/S.0901080 Sum function of a function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ f $'' | |
− | The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of | + | The function of $ x \geq 1 $ |
+ | that denotes the sum of the values $ f( n) $ | ||
+ | of the function $ f $ | ||
+ | on the set of natural numbers $ n \leq x $, | ||
+ | $ \sum _ {n\leq } x f( n) $. | ||
+ | Sum functions are one of the basic means of expressing various properties of sequences of numbers. | ||
+ | |||
+ | Examples of sum functions: the number of prime numbers $ \leq x $; | ||
+ | $ \psi ( x) = \sum _ {n\leq } x \Lambda ( n) $— | ||
+ | the [[Chebyshev function|Chebyshev function]]; the number of divisors of all $ n \leq x $, | ||
+ | etc. (see [[#References|[1]]], [[#References|[2]]]). | ||
+ | |||
+ | The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of $ x $. | ||
The [[Cauchy integral theorem|Cauchy integral theorem]] and [[Dirichlet series|Dirichlet series]] of the form | The [[Cauchy integral theorem|Cauchy integral theorem]] and [[Dirichlet series|Dirichlet series]] of the form | ||
− | + | $$ | |
+ | F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s | ||
+ | $$ | ||
− | form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for | + | form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for $ \mathop{\rm Re} s > \sigma _ {0} \geq 1 $, |
+ | then for a non-integer $ x $, | ||
+ | and $ c > \sigma _ {0} $, | ||
+ | the identity | ||
− | + | $$ | |
+ | \sum _ { n\leq } x f( n) = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ {c- i \infty } ^ { {c+ } i \infty } F( s) | ||
+ | \frac{x | ||
+ | ^ {s} }{s} | ||
+ | ds | ||
+ | $$ | ||
− | holds; a corresponding estimate of the sum function of | + | holds; a corresponding estimate of the sum function of $ f $ |
+ | is obtained from this by analytic continuation of $ F( s) $ | ||
+ | by shifting the integration path to the left to a certain $ \mathop{\rm Re} s = \sigma _ {1} < 0 $ | ||
+ | and estimating the integral along the new path. If $ f( n) = \Lambda ( n) $, | ||
+ | for example, the integration can be shifted to $ \mathop{\rm Re} s = - \infty $, | ||
+ | which gives the Riemann–von Mangoldt formula for $ \psi ( x) $. | ||
+ | Of the common applications of the method, the following theorem is known. | ||
===Assumptions:=== | ===Assumptions:=== | ||
− | + | $ f( n) $, | |
+ | $ l _ {n} $ | ||
+ | are complex numbers, $ \alpha \geq 0 $, | ||
+ | $ \alpha _ {r} $, | ||
+ | $ \gamma _ {r} $ | ||
+ | are real numbers, $ \sigma _ {r} $, | ||
+ | $ \beta _ {r} $ | ||
+ | are positive numbers, $ \mu $ | ||
+ | and $ \nu $ | ||
+ | are integers $ \geq 1 $, | ||
+ | $ \Gamma $ | ||
+ | is the gamma-function, and $ \lambda _ {1} < \lambda _ {2} < \dots $. | ||
− | 1) For any | + | 1) For any $ \epsilon > 0 $, |
+ | $ f( n) \ll n ^ {\alpha + \epsilon } $; | ||
2) the function | 2) the function | ||
− | + | $$ | |
+ | F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s , | ||
+ | $$ | ||
− | defined for | + | defined for $ s = \sigma + it $, |
+ | $ \sigma > 1 + \alpha $, | ||
+ | is meromorphic in the whole plane, and has a finite number of poles in the strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $; | ||
− | 3) the series | + | 3) the series $ \sum _ {n=} 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s) $ |
+ | converges absolutely when $ \sigma < 0 $; | ||
− | 4) for < | + | 4) for $ \sigma < 0 $, |
− | + | $$ | |
+ | \prod _ { r= } 1 ^ \mu \Gamma ( \alpha _ {r} + \beta _ {r} s) F( s) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \prod _ { r= } 1 ^ \nu \Gamma ( \gamma _ {r} - \delta _ {r} s) | ||
+ | \sum _ { n= } 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s); | ||
+ | $$ | ||
− | 5) | + | 5) $ \beta _ {1} + \dots + \beta _ \mu = \delta _ {1} + \dots + \delta _ \nu $; |
6) if one assumes that | 6) if one assumes that | ||
− | + | $$ | |
+ | \sum _ { r= } 1 ^ \nu \gamma _ {r} - \sum _ { r= } 1 ^ \mu \alpha _ {r} + | ||
+ | \frac{1}{2} | ||
+ | ( \mu - \nu ) = \eta , | ||
+ | $$ | ||
− | then | + | then $ \eta \geq \alpha + 1/2 $. |
− | For a fixed strip | + | For a fixed strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ |
+ | there is a constant $ \gamma = \gamma ( \sigma _ {1} , \sigma _ {2} ) $ | ||
+ | such that for $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ | ||
+ | and large $ | t | $ | ||
+ | the estimate $ F( s) \ll \mathop{\rm exp} ( \gamma | t | ) $ | ||
+ | holds. | ||
===Conclusion.=== | ===Conclusion.=== | ||
− | For any | + | For any $ \epsilon > 0 $, |
− | + | $$ | |
+ | \sum _ { n\leq } x f( n) = R( x) + O ( x ^ {\{ ( \alpha + 1) ( 2 \eta - 1) / ( 2 | ||
+ | \eta + 1) \} + \epsilon } ) , | ||
+ | $$ | ||
− | where | + | where $ R( x) $ |
+ | is the sum of the residues of the function $ F( s) x ^ {s} /s $ | ||
+ | over all its poles in the strip | ||
− | + | $$ | |
+ | ( \alpha + 1) | ||
+ | \frac{2 \eta - 1 }{2 \eta + 1 } | ||
+ | < \sigma \leq \alpha + 1. | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Riemann–von Mangoldt formula, or von Mangoldt formula, for | + | The Riemann–von Mangoldt formula, or von Mangoldt formula, for $ \psi ( x) $, |
+ | $ x> 1 $, | ||
+ | is | ||
− | + | $$ | |
+ | \psi ( x) = x - \sum _ { p } | ||
+ | \frac{x ^ {p} }{p} | ||
+ | + \sum _ { n } | ||
+ | \frac{x ^ {-} 2n }{2n} | ||
+ | + \textrm{ const } . | ||
+ | $$ | ||
This is von Mangoldt's reformulation of Riemann's main formula | This is von Mangoldt's reformulation of Riemann's main formula | ||
− | + | $$ | |
+ | J( x) = \mathop{\rm Li} ( x) - \sum _ { p } \mathop{\rm Li} ( x ^ {p} ) - \mathop{\rm log} 2+ | ||
+ | \int\limits _ { x } ^ \infty | ||
+ | \frac{dt}{t( t ^ {2} - 1) \mathop{\rm log} t } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ x> 1 $, |
+ | the $ J $- | ||
+ | function is | ||
− | + | $$ | |
+ | J( x) = | ||
+ | \frac{1}{2} | ||
+ | \left ( \sum _ {p ^ {n} < x } | ||
+ | \frac{1}{n} | ||
+ | + \sum _ | ||
+ | {p ^ {n} \leq x } | ||
+ | \frac{1}{n} | ||
+ | \right ) | ||
+ | $$ | ||
− | and | + | and $ \mathop{\rm Li} ( x) $ |
+ | is the [[logarithmic integral]] | ||
− | + | $$ | |
+ | \mathop{\rm Li} ( x) = \lim\limits _ {\epsilon \downarrow 0 } \left [ \int\limits _ { 0 } ^ { {1-\epsilon } } | ||
+ | \frac{dt}{ \mathop{\rm log} t } | ||
+ | + \int\limits _ {1+ \epsilon } ^ { x } | ||
+ | \frac{dt}{ \mathop{\rm log} | ||
+ | t } | ||
+ | \right ] . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3</TD></TR></table> |
Revision as of 08:24, 6 June 2020
$ f $
The function of $ x \geq 1 $ that denotes the sum of the values $ f( n) $ of the function $ f $ on the set of natural numbers $ n \leq x $, $ \sum _ {n\leq } x f( n) $. Sum functions are one of the basic means of expressing various properties of sequences of numbers.
Examples of sum functions: the number of prime numbers $ \leq x $; $ \psi ( x) = \sum _ {n\leq } x \Lambda ( n) $— the Chebyshev function; the number of divisors of all $ n \leq x $, etc. (see [1], [2]).
The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of $ x $.
The Cauchy integral theorem and Dirichlet series of the form
$$ F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s $$
form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for $ \mathop{\rm Re} s > \sigma _ {0} \geq 1 $, then for a non-integer $ x $, and $ c > \sigma _ {0} $, the identity
$$ \sum _ { n\leq } x f( n) = \frac{1}{2 \pi i } \int\limits _ {c- i \infty } ^ { {c+ } i \infty } F( s) \frac{x ^ {s} }{s} ds $$
holds; a corresponding estimate of the sum function of $ f $ is obtained from this by analytic continuation of $ F( s) $ by shifting the integration path to the left to a certain $ \mathop{\rm Re} s = \sigma _ {1} < 0 $ and estimating the integral along the new path. If $ f( n) = \Lambda ( n) $, for example, the integration can be shifted to $ \mathop{\rm Re} s = - \infty $, which gives the Riemann–von Mangoldt formula for $ \psi ( x) $. Of the common applications of the method, the following theorem is known.
Assumptions:
$ f( n) $, $ l _ {n} $ are complex numbers, $ \alpha \geq 0 $, $ \alpha _ {r} $, $ \gamma _ {r} $ are real numbers, $ \sigma _ {r} $, $ \beta _ {r} $ are positive numbers, $ \mu $ and $ \nu $ are integers $ \geq 1 $, $ \Gamma $ is the gamma-function, and $ \lambda _ {1} < \lambda _ {2} < \dots $.
1) For any $ \epsilon > 0 $, $ f( n) \ll n ^ {\alpha + \epsilon } $;
2) the function
$$ F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s , $$
defined for $ s = \sigma + it $, $ \sigma > 1 + \alpha $, is meromorphic in the whole plane, and has a finite number of poles in the strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $;
3) the series $ \sum _ {n=} 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s) $ converges absolutely when $ \sigma < 0 $;
4) for $ \sigma < 0 $,
$$ \prod _ { r= } 1 ^ \mu \Gamma ( \alpha _ {r} + \beta _ {r} s) F( s) = $$
$$ = \ \prod _ { r= } 1 ^ \nu \Gamma ( \gamma _ {r} - \delta _ {r} s) \sum _ { n= } 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s); $$
5) $ \beta _ {1} + \dots + \beta _ \mu = \delta _ {1} + \dots + \delta _ \nu $;
6) if one assumes that
$$ \sum _ { r= } 1 ^ \nu \gamma _ {r} - \sum _ { r= } 1 ^ \mu \alpha _ {r} + \frac{1}{2} ( \mu - \nu ) = \eta , $$
then $ \eta \geq \alpha + 1/2 $.
For a fixed strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ there is a constant $ \gamma = \gamma ( \sigma _ {1} , \sigma _ {2} ) $ such that for $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ and large $ | t | $ the estimate $ F( s) \ll \mathop{\rm exp} ( \gamma | t | ) $ holds.
Conclusion.
For any $ \epsilon > 0 $,
$$ \sum _ { n\leq } x f( n) = R( x) + O ( x ^ {\{ ( \alpha + 1) ( 2 \eta - 1) / ( 2 \eta + 1) \} + \epsilon } ) , $$
where $ R( x) $ is the sum of the residues of the function $ F( s) x ^ {s} /s $ over all its poles in the strip
$$ ( \alpha + 1) \frac{2 \eta - 1 }{2 \eta + 1 } < \sigma \leq \alpha + 1. $$
References
[1] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) |
[2] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
Comments
The Riemann–von Mangoldt formula, or von Mangoldt formula, for $ \psi ( x) $, $ x> 1 $, is
$$ \psi ( x) = x - \sum _ { p } \frac{x ^ {p} }{p} + \sum _ { n } \frac{x ^ {-} 2n }{2n} + \textrm{ const } . $$
This is von Mangoldt's reformulation of Riemann's main formula
$$ J( x) = \mathop{\rm Li} ( x) - \sum _ { p } \mathop{\rm Li} ( x ^ {p} ) - \mathop{\rm log} 2+ \int\limits _ { x } ^ \infty \frac{dt}{t( t ^ {2} - 1) \mathop{\rm log} t } , $$
where $ x> 1 $, the $ J $- function is
$$ J( x) = \frac{1}{2} \left ( \sum _ {p ^ {n} < x } \frac{1}{n} + \sum _ {p ^ {n} \leq x } \frac{1}{n} \right ) $$
and $ \mathop{\rm Li} ( x) $ is the logarithmic integral
$$ \mathop{\rm Li} ( x) = \lim\limits _ {\epsilon \downarrow 0 } \left [ \int\limits _ { 0 } ^ { {1-\epsilon } } \frac{dt}{ \mathop{\rm log} t } + \int\limits _ {1+ \epsilon } ^ { x } \frac{dt}{ \mathop{\rm log} t } \right ] . $$
References
[a1] | H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3 |
Sum function of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sum_function_of_a_function&oldid=48904