Difference between revisions of "Semi-continuous mapping"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0840201.png | ||
| + | $#A+1 = 35 n = 0 | ||
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/S084/S.0804020 Semi\AAhcontinuous mapping, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''upper (lower)'' | ''upper (lower)'' | ||
| − | A mapping | + | A mapping $ f $ |
| + | from a [[Topological space|topological space]] $ X $ | ||
| + | into a partially ordered set $ P $ | ||
| + | such that | ||
| − | + | $$ | |
| + | \lim\limits x _ {n} = x | ||
| + | $$ | ||
implies that | implies that | ||
| − | + | $$ | |
| − | + | \overline{\lim\limits}\; f ( x _ {n} ) \leq f ( x) \ \left ( fnnme \underline{lim} f ( x _ {n} ) | |
| − | + | \geq f ( x) \right ) , | |
| − | + | $$ | |
| + | where $ \overline{\lim\limits}\; $( | ||
| + | $ fnnme \underline{lim} $) | ||
| + | denotes the [[limes superior]] (inferior). | ||
====Comments==== | ====Comments==== | ||
| − | On a partially ordered set | + | On a partially ordered set $ P $ |
| + | the collection consisting of $ P $ | ||
| + | and all sets $ U _ {x} = \{ {y \in P } : {y < x } \} $ | ||
| + | is a base for a topology on $ P $, | ||
| + | denoted by $ \tau _ {-} $, | ||
| + | and $ P $ | ||
| + | and all sets $ V _ {x} = \{ {y \in P } : {y \geq x } \} $ | ||
| + | define a topology $ \tau _ {+} $. | ||
| + | The mapping $ f: X \rightarrow P $ | ||
| + | is upper semi-continuous, (u.s.c.) (respectively, lower semi-continuous (l.s.c.)) if and only if $ f : X \rightarrow ( P , \tau _ {+} ) $( | ||
| + | respectively, $ f: X \rightarrow ( P , \tau _ {-} ) $) | ||
| + | is continuous. | ||
| − | In fact, upper and lower semi-continuity are usually defined only for mappings to the real line | + | In fact, upper and lower semi-continuity are usually defined only for mappings to the real line $ \mathbf R $. |
| + | In terms of open sets, one sees that $ f : X \rightarrow \mathbf R $ | ||
| + | is upper (lower) semi-continuous if and only if $ f ^ { - 1 } [ (- \infty , a)] $( | ||
| + | $ f ^ { - 1 } [( a, \infty )] $) | ||
| + | is open for every $ a $. | ||
| − | Semi-continuity is also defined for set-valued mappings. A mapping | + | Semi-continuity is also defined for set-valued mappings. A mapping $ F : X \rightarrow 2 ^ {Y} $ |
| + | is upper (lower) semi-continuous if for every open subset $ U $ | ||
| + | of $ Y $ | ||
| + | the set $ \{ {x } : {F( x) \subseteq U } \} $( | ||
| + | the set $ \{ {x } : {F( x) \cap U \neq \emptyset } \} $) | ||
| + | is open. | ||
| − | Note that if a mapping | + | Note that if a mapping $ f: X \rightarrow Y $ |
| + | is regarded as a set-valued mapping $ F : X \rightarrow 2 ^ {Y} $, | ||
| + | $ F( x) = \{ f( x) \} $, | ||
| + | then $ F $ | ||
| + | is lower semi-continuous if and only if $ f $ | ||
| + | is lower semi-continuous; and $ F $ | ||
| + | is upper semi-continuous if and only if $ f $ | ||
| + | is upper semi-continuous. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "General topology" , Heldermann (1989)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "General topology" , Heldermann (1989)</TD></TR></table> | ||
Latest revision as of 08:13, 6 June 2020
upper (lower)
A mapping $ f $ from a topological space $ X $ into a partially ordered set $ P $ such that
$$ \lim\limits x _ {n} = x $$
implies that
$$ \overline{\lim\limits}\; f ( x _ {n} ) \leq f ( x) \ \left ( fnnme \underline{lim} f ( x _ {n} ) \geq f ( x) \right ) , $$
where $ \overline{\lim\limits}\; $( $ fnnme \underline{lim} $) denotes the limes superior (inferior).
Comments
On a partially ordered set $ P $ the collection consisting of $ P $ and all sets $ U _ {x} = \{ {y \in P } : {y < x } \} $ is a base for a topology on $ P $, denoted by $ \tau _ {-} $, and $ P $ and all sets $ V _ {x} = \{ {y \in P } : {y \geq x } \} $ define a topology $ \tau _ {+} $. The mapping $ f: X \rightarrow P $ is upper semi-continuous, (u.s.c.) (respectively, lower semi-continuous (l.s.c.)) if and only if $ f : X \rightarrow ( P , \tau _ {+} ) $( respectively, $ f: X \rightarrow ( P , \tau _ {-} ) $) is continuous.
In fact, upper and lower semi-continuity are usually defined only for mappings to the real line $ \mathbf R $. In terms of open sets, one sees that $ f : X \rightarrow \mathbf R $ is upper (lower) semi-continuous if and only if $ f ^ { - 1 } [ (- \infty , a)] $( $ f ^ { - 1 } [( a, \infty )] $) is open for every $ a $.
Semi-continuity is also defined for set-valued mappings. A mapping $ F : X \rightarrow 2 ^ {Y} $ is upper (lower) semi-continuous if for every open subset $ U $ of $ Y $ the set $ \{ {x } : {F( x) \subseteq U } \} $( the set $ \{ {x } : {F( x) \cap U \neq \emptyset } \} $) is open.
Note that if a mapping $ f: X \rightarrow Y $ is regarded as a set-valued mapping $ F : X \rightarrow 2 ^ {Y} $, $ F( x) = \{ f( x) \} $, then $ F $ is lower semi-continuous if and only if $ f $ is lower semi-continuous; and $ F $ is upper semi-continuous if and only if $ f $ is upper semi-continuous.
References
| [a1] | R. Engelking, "General topology" , Heldermann (1989) |
Semi-continuous mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-continuous_mapping&oldid=48656