|
|
Line 1: |
Line 1: |
− | A branch of [[Commutative algebra|commutative algebra]] and [[Number theory|number theory]] in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a [[Valuation|valuation]] are considered. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100201.png" /> be a (not necessarily finite) algebraic extension of fields, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100202.png" /> be a valuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100203.png" /> with valuation ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100204.png" /> and extending a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100205.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100206.png" />. Assume that the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100207.png" /> is normal (cf. [[Extension of a field|Extension of a field]]) and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100208.png" /> is its [[Galois group|Galois group]]. The subgroup
| + | <!-- |
| + | r1100201.png |
| + | $#A+1 = 117 n = 0 |
| + | $#C+1 = 117 : ~/encyclopedia/old_files/data/R110/R.1100020 Ramification theory of valued fields |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100209.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002010.png" /> is called the decomposition group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002011.png" />, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002012.png" /> the decomposition field. The subgroup | + | A branch of [[Commutative algebra|commutative algebra]] and [[Number theory|number theory]] in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a [[Valuation|valuation]] are considered. Let $ L \mid K $ |
| + | be a (not necessarily finite) algebraic extension of fields, and let $ w $ |
| + | be a valuation of $ L $ |
| + | with valuation ring $ {\mathcal O} _ {w} $ |
| + | and extending a valuation $ v $ |
| + | of $ K $. |
| + | Assume that the extension $ L \mid K $ |
| + | is normal (cf. [[Extension of a field|Extension of a field]]) and that $ G = G ( L \mid K ) $ |
| + | is its [[Galois group|Galois group]]. The subgroup |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002013.png" /></td> </tr></table>
| + | $$ |
| + | G _ {Z} = \left \{ {\sigma \in G } : {w ( \sigma a ) = w ( a ) \textrm{ for all } a \in L } \right \} |
| + | $$ |
| | | |
− | of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002014.png" /> is called the inertia group, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002015.png" /> the inertia field. The subgroup | + | of $ G $ |
| + | is called the decomposition group of $ w \mid v $, |
| + | and its fixed field $ Z $ |
| + | the decomposition field. The subgroup |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002016.png" /></td> </tr></table>
| + | $$ |
| + | G _ {T} = \left \{ {\sigma \in G } : {w ( \sigma a - a ) > 0 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \} |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002017.png" /></td> </tr></table>
| + | of $ G _ {Z} $ |
| + | is called the inertia group, and its fixed field $ T $ |
| + | the inertia field. The subgroup |
| | | |
− | of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002018.png" /> is called the ramification group, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002019.png" /> the ramification field. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002020.png" /> denotes the (unique) maximal [[Ideal|ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002021.png" />, then the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002022.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002024.png" /> is equivalent to
| + | $$ |
| + | G _ {V} = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002025.png" /></td> </tr></table>
| + | $$ |
| + | = |
| + | \left \{ {\sigma \in G } : {w ( \sigma a - a ) > w ( a ) \textrm{ for all } a \in L, a \neq 0 } \right \} |
| + | $$ |
| | | |
− | In number theory, also the higher ramification groups (cf. [[Ramified prime ideal|Ramified prime ideal]]) play a role; see [[#References|[a2]]]. If the value group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002026.png" /> is a subgroup of the real numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002027.png" /> is a real number, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002028.png" />th ramification group is defined to be
| + | of $ G _ {T} $ |
| + | is called the ramification group, and its fixed field $ V $ |
| + | the ramification field. If $ {\mathcal M} _ {w} $ |
| + | denotes the (unique) maximal [[Ideal|ideal]] of $ {\mathcal O} _ {w} $, |
| + | then the condition $ w ( \sigma a - a ) > 0 $ |
| + | is equivalent to $ \sigma a - a \in {\mathcal M} _ {w} $, |
| + | and $ w ( \sigma a - a ) > w ( a ) $ |
| + | is equivalent to |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002029.png" /></td> </tr></table>
| + | $$ |
| + | { |
| + | \frac{\sigma a }{a} |
| + | } - 1 \in {\mathcal M} _ {w} . |
| + | $$ |
| + | |
| + | In number theory, also the higher ramification groups (cf. [[Ramified prime ideal|Ramified prime ideal]]) play a role; see [[#References|[a2]]]. If the value group $ wL $ |
| + | is a subgroup of the real numbers and $ s \geq - 1 $ |
| + | is a real number, then the $ s $ |
| + | th ramification group is defined to be |
| + | |
| + | $$ |
| + | \left \{ {\sigma \in G } : {w ( \sigma a - a ) \geq s + 1 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \} . |
| + | $$ |
| | | |
| ==Basic properties.== | | ==Basic properties.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002030.png" /> denote the characteristic of the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002031.png" /> if it is a positive prime number; otherwise, set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002032.png" />. For simplicity, denote the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002033.png" /> to the intermediate fields again by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002034.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002035.png" /> is a [[Pro-p group|pro-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002036.png" />-group]]; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002037.png" /> if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002038.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002039.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002040.png" /> of the respective value groups is a [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002041.png" />-group]], and the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002042.png" /> of the respective residue fields is [[Purely inseparable extension|purely inseparable]] . <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002044.png" /> are normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002046.png" /> is a [[Normal subgroup|normal subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002047.png" />. | + | Let $ p $ |
| + | denote the characteristic of the residue field $ Lw $ |
| + | if it is a positive prime number; otherwise, set $ p = 1 $. |
| + | For simplicity, denote the restriction of $ w $ |
| + | to the intermediate fields again by $ w $. |
| + | Then $ G _ {V} $ |
| + | is a [[Pro-p group|pro- $ p $- |
| + | group]]; in particular, $ L = V $ |
| + | if the characteristic of $ Lw $ |
| + | is $ 0 $. |
| + | The quotient group $ wL/wV $ |
| + | of the respective value groups is a [[P-group| $ p $- |
| + | group]], and the extension $ Lw \mid Vw $ |
| + | of the respective residue fields is [[Purely inseparable extension|purely inseparable]] . $ G _ {V} $ |
| + | and $ G _ {T} $ |
| + | are normal subgroups of $ G _ {Z} $, |
| + | and $ G _ {V} $ |
| + | is a [[Normal subgroup|normal subgroup]] of $ G _ {T} $. |
| | | |
− | The [[Galois group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002048.png" /> of the normal separable extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002049.png" /> is isomorphic to the character group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002050.png" />, which is (non-canonically) isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002051.png" /> if this group is finite. One has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002052.png" />, and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002053.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002055.png" />-prime, i.e., no element has an order divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002056.png" />. Every finite quotient of the [[Profinite group|profinite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002057.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002058.png" />-prime. | + | The [[Galois group]] $ G _ {T} /G _ {V} $ |
| + | of the normal separable extension $ V \mid T $ |
| + | is isomorphic to the character group $ { \mathop{\rm Hom} } ( wL/vK,Lw ^ \times ) $, |
| + | which is (non-canonically) isomorphic to $ wV/wT $ |
| + | if this group is finite. One has $ Vw = Tw $, |
| + | and the group $ wV/wT $ |
| + | is $ p $- |
| + | prime, i.e., no element has an order divisible by $ p $. |
| + | Every finite quotient of the [[Profinite group|profinite group]] $ G _ {T} /G _ {V} $ |
| + | is $ p $- |
| + | prime. |
| | | |
− | The Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002059.png" /> of the normal separable extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002060.png" /> is isomorphic to the Galois group of the normal extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002061.png" /> (which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002062.png" />). Furthermore, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002063.png" /> is separable, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002064.png" />. The extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002065.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002066.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002067.png" /> is unique. The extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002068.png" /> is purely inseparable, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002069.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002070.png" />-group. | + | The Galois group $ G _ {Z} /G _ {T} $ |
| + | of the normal separable extension $ T \mid Z $ |
| + | is isomorphic to the Galois group of the normal extensions $ Lw \mid Kv $( |
| + | which is $ Tw \mid Zw $). |
| + | Furthermore, $ Tw \mid Zw $ |
| + | is separable, and $ wT = wZ $. |
| + | The extension of $ w $ |
| + | from $ Z $ |
| + | to $ L $ |
| + | is unique. The extension $ Zw \mid Kv $ |
| + | is purely inseparable, and $ wZ/vK $ |
| + | is a $ p $- |
| + | group. |
| | | |
− | For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002071.png" />. Then one obtains the following additional properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002072.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002073.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002074.png" /> is the minimal subextension which admits a unique extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002075.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002076.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002077.png" /> is the maximal separable subextension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002078.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002079.png" /> is the maximal of all subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002081.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002082.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002083.png" />-prime. | + | For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of $ L \mid K $. |
| + | Then one obtains the following additional properties: $ wZ = vK $; |
| + | $ Zw = Kv $; |
| + | $ Z $ |
| + | is the minimal subextension which admits a unique extension of $ w $ |
| + | to $ L $; |
| + | $ Tw \mid Kv $ |
| + | is the maximal separable subextension of $ Lw \mid Kv $; |
| + | and $ wV $ |
| + | is the maximal of all subgroups $ \Gamma $ |
| + | of $ wL $ |
| + | for which $ \Gamma/vK $ |
| + | is $ p $- |
| + | prime. |
| | | |
| ==Absolute ramification theory.== | | ==Absolute ramification theory.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002084.png" /> be any field with a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002085.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002086.png" /> be some extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002087.png" /> to the separable-algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002088.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002089.png" />. Then the intermediate fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002090.png" /> are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002091.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002092.png" /> are conjugate, that is, of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002093.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002094.png" />, it follows that these fields are independent of the choice of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002095.png" />, up to isomorphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002096.png" />. The absolute ramification field is the Henselization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002097.png" /> inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002098.png" /> (see [[Henselization of a valued field|Henselization of a valued field]]); it coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002099.png" /> if and only if the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020100.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020101.png" /> to every algebraic extension field is unique. | + | Let $ K $ |
| + | be any field with a valuation $ v $, |
| + | and let $ v ^ {s} $ |
| + | be some extension of $ v $ |
| + | to the separable-algebraic closure $ K ^ {s} $ |
| + | of $ K $. |
| + | Then the intermediate fields $ Z,T,V $ |
| + | are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of $ v $ |
| + | to $ K ^ {s} $ |
| + | are conjugate, that is, of the form $ v \circ \sigma $ |
| + | for $ \sigma \in G ( K ^ {s} \mid K ) $, |
| + | it follows that these fields are independent of the choice of the extension $ v ^ {s} $, |
| + | up to isomorphism over $ K $. |
| + | The absolute ramification field is the Henselization of $ ( K,v ) $ |
| + | inside $ ( K ^ {s} ,v ^ {s} ) $( |
| + | see [[Henselization of a valued field|Henselization of a valued field]]); it coincides with $ K $ |
| + | if and only if the extension of $ v $ |
| + | from $ K $ |
| + | to every algebraic extension field is unique. |
| | | |
| ==Tame extensions and defectless fields.== | | ==Tame extensions and defectless fields.== |
− | An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020102.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020103.png" /> is called tamely ramified if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020104.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020105.png" />-prime and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020106.png" /> is separable. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020107.png" /> be Henselian. Then an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020108.png" /> is called a tame extension if it is algebraic, tamely ramified and the [[Defect|defect]] of every finite subextension is trivial, that is, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020109.png" />. The absolute ramification field is the unique maximal tame extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020110.png" />. If it is algebraically closed, or equivalently, if all algebraic extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020111.png" /> are tame extensions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020112.png" /> is called a tame field; see also [[Model theory of valued fields|Model theory of valued fields]]. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020113.png" />. Since every finite subextension of this extension has as degree a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020114.png" />, the defect must be a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020115.png" />. This is the content of the Ostrowski lemma. In particular, the defect is always trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020116.png" />, that is, if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020117.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020118.png" />. | + | An extension $ ( L,w ) $ |
| + | of $ ( K,v ) $ |
| + | is called tamely ramified if $ wL/vK $ |
| + | is $ p $- |
| + | prime and $ Lw \mid Kv $ |
| + | is separable. Let $ ( K,v ) $ |
| + | be Henselian. Then an extension of $ ( K,v ) $ |
| + | is called a tame extension if it is algebraic, tamely ramified and the [[Defect|defect]] of every finite subextension is trivial, that is, equal to $ 1 $. |
| + | The absolute ramification field is the unique maximal tame extension of $ ( K,v ) $. |
| + | If it is algebraically closed, or equivalently, if all algebraic extensions of $ ( K,v ) $ |
| + | are tame extensions, then $ ( K,v ) $ |
| + | is called a tame field; see also [[Model theory of valued fields|Model theory of valued fields]]. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of $ K $. |
| + | Since every finite subextension of this extension has as degree a power of $ p $, |
| + | the defect must be a power of $ p $. |
| + | This is the content of the Ostrowski lemma. In particular, the defect is always trivial if $ p = 1 $, |
| + | that is, if the characteristic of $ Kv $ |
| + | is $ 0 $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Endler, "Valuation theory" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.P. Serre, "Corps locaux" , Hermann (1962)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Endler, "Valuation theory" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.P. Serre, "Corps locaux" , Hermann (1962)</TD></TR></table> |
A branch of commutative algebra and number theory in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a valuation are considered. Let $ L \mid K $
be a (not necessarily finite) algebraic extension of fields, and let $ w $
be a valuation of $ L $
with valuation ring $ {\mathcal O} _ {w} $
and extending a valuation $ v $
of $ K $.
Assume that the extension $ L \mid K $
is normal (cf. Extension of a field) and that $ G = G ( L \mid K ) $
is its Galois group. The subgroup
$$
G _ {Z} = \left \{ {\sigma \in G } : {w ( \sigma a ) = w ( a ) \textrm{ for all } a \in L } \right \}
$$
of $ G $
is called the decomposition group of $ w \mid v $,
and its fixed field $ Z $
the decomposition field. The subgroup
$$
G _ {T} = \left \{ {\sigma \in G } : {w ( \sigma a - a ) > 0 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \}
$$
of $ G _ {Z} $
is called the inertia group, and its fixed field $ T $
the inertia field. The subgroup
$$
G _ {V} =
$$
$$
=
\left \{ {\sigma \in G } : {w ( \sigma a - a ) > w ( a ) \textrm{ for all } a \in L, a \neq 0 } \right \}
$$
of $ G _ {T} $
is called the ramification group, and its fixed field $ V $
the ramification field. If $ {\mathcal M} _ {w} $
denotes the (unique) maximal ideal of $ {\mathcal O} _ {w} $,
then the condition $ w ( \sigma a - a ) > 0 $
is equivalent to $ \sigma a - a \in {\mathcal M} _ {w} $,
and $ w ( \sigma a - a ) > w ( a ) $
is equivalent to
$$
{
\frac{\sigma a }{a}
} - 1 \in {\mathcal M} _ {w} .
$$
In number theory, also the higher ramification groups (cf. Ramified prime ideal) play a role; see [a2]. If the value group $ wL $
is a subgroup of the real numbers and $ s \geq - 1 $
is a real number, then the $ s $
th ramification group is defined to be
$$
\left \{ {\sigma \in G } : {w ( \sigma a - a ) \geq s + 1 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \} .
$$
Basic properties.
Let $ p $
denote the characteristic of the residue field $ Lw $
if it is a positive prime number; otherwise, set $ p = 1 $.
For simplicity, denote the restriction of $ w $
to the intermediate fields again by $ w $.
Then $ G _ {V} $
is a pro- $ p $-
group; in particular, $ L = V $
if the characteristic of $ Lw $
is $ 0 $.
The quotient group $ wL/wV $
of the respective value groups is a $ p $-
group, and the extension $ Lw \mid Vw $
of the respective residue fields is purely inseparable . $ G _ {V} $
and $ G _ {T} $
are normal subgroups of $ G _ {Z} $,
and $ G _ {V} $
is a normal subgroup of $ G _ {T} $.
The Galois group $ G _ {T} /G _ {V} $
of the normal separable extension $ V \mid T $
is isomorphic to the character group $ { \mathop{\rm Hom} } ( wL/vK,Lw ^ \times ) $,
which is (non-canonically) isomorphic to $ wV/wT $
if this group is finite. One has $ Vw = Tw $,
and the group $ wV/wT $
is $ p $-
prime, i.e., no element has an order divisible by $ p $.
Every finite quotient of the profinite group $ G _ {T} /G _ {V} $
is $ p $-
prime.
The Galois group $ G _ {Z} /G _ {T} $
of the normal separable extension $ T \mid Z $
is isomorphic to the Galois group of the normal extensions $ Lw \mid Kv $(
which is $ Tw \mid Zw $).
Furthermore, $ Tw \mid Zw $
is separable, and $ wT = wZ $.
The extension of $ w $
from $ Z $
to $ L $
is unique. The extension $ Zw \mid Kv $
is purely inseparable, and $ wZ/vK $
is a $ p $-
group.
For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of $ L \mid K $.
Then one obtains the following additional properties: $ wZ = vK $;
$ Zw = Kv $;
$ Z $
is the minimal subextension which admits a unique extension of $ w $
to $ L $;
$ Tw \mid Kv $
is the maximal separable subextension of $ Lw \mid Kv $;
and $ wV $
is the maximal of all subgroups $ \Gamma $
of $ wL $
for which $ \Gamma/vK $
is $ p $-
prime.
Absolute ramification theory.
Let $ K $
be any field with a valuation $ v $,
and let $ v ^ {s} $
be some extension of $ v $
to the separable-algebraic closure $ K ^ {s} $
of $ K $.
Then the intermediate fields $ Z,T,V $
are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of $ v $
to $ K ^ {s} $
are conjugate, that is, of the form $ v \circ \sigma $
for $ \sigma \in G ( K ^ {s} \mid K ) $,
it follows that these fields are independent of the choice of the extension $ v ^ {s} $,
up to isomorphism over $ K $.
The absolute ramification field is the Henselization of $ ( K,v ) $
inside $ ( K ^ {s} ,v ^ {s} ) $(
see Henselization of a valued field); it coincides with $ K $
if and only if the extension of $ v $
from $ K $
to every algebraic extension field is unique.
Tame extensions and defectless fields.
An extension $ ( L,w ) $
of $ ( K,v ) $
is called tamely ramified if $ wL/vK $
is $ p $-
prime and $ Lw \mid Kv $
is separable. Let $ ( K,v ) $
be Henselian. Then an extension of $ ( K,v ) $
is called a tame extension if it is algebraic, tamely ramified and the defect of every finite subextension is trivial, that is, equal to $ 1 $.
The absolute ramification field is the unique maximal tame extension of $ ( K,v ) $.
If it is algebraically closed, or equivalently, if all algebraic extensions of $ ( K,v ) $
are tame extensions, then $ ( K,v ) $
is called a tame field; see also Model theory of valued fields. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of $ K $.
Since every finite subextension of this extension has as degree a power of $ p $,
the defect must be a power of $ p $.
This is the content of the Ostrowski lemma. In particular, the defect is always trivial if $ p = 1 $,
that is, if the characteristic of $ Kv $
is $ 0 $.
References
[a1] | O. Endler, "Valuation theory" , Springer (1972) |
[a2] | J.P. Serre, "Corps locaux" , Hermann (1962) |