Difference between revisions of "Pictures"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p1101301.png | ||
+ | $#A+1 = 50 n = 0 | ||
+ | $#C+1 = 50 : ~/encyclopedia/old_files/data/P110/P.1100130 Pictures | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | ( | + | A class of bijections (cf. [[Bijection|Bijection]]) between subsets of $ \mathbf Z \times \mathbf Z $, |
+ | namely skew diagrams. A skew diagram is a finite subset $ S \subset \mathbf Z \times \mathbf Z $ | ||
+ | such that $ x \leq y \leq z $ | ||
+ | with $ x,z \in S $ | ||
+ | implies $ y \in S $, | ||
+ | where "≤" is the coordinatewise partial ordering of $ \mathbf Z \times \mathbf Z $; | ||
+ | a typical skew diagram is the difference $ \lambda \setminus \mu $ | ||
+ | of two Young diagrams (cf. [[Young diagram|Young diagram]]) $ \lambda, \mu $ | ||
+ | with $ \mu \subset \lambda $. | ||
+ | The definition of pictures also uses another partial ordering "≤" on $ \mathbf Z \times \mathbf Z $, | ||
+ | given by | ||
− | + | $$ | |
+ | ( i,j ) \leq _ \swarrow ( i ^ \prime ,j ^ \prime ) \iff i \geq i ^ \prime \wedge j \leq j ^ \prime | ||
+ | $$ | ||
− | + | (sometimes the opposite ordering is used instead); a bijection $ f $ | |
+ | between two skew diagrams is a picture if $ x \leq y $ | ||
+ | implies $ f ( x ) \leq _ \swarrow f ( y ) $ | ||
+ | and $ u \leq v $ | ||
+ | implies $ f ^ {- 1 } ( u ) \leq _ \swarrow f ^ {- 1 } ( v ) $. | ||
+ | The set of all pictures has various symmetries, among which $ f \left\rightarrow f ^ {- 1 } $. | ||
+ | |||
+ | When domain and image are fixed to certain shapes, pictures become equivalent to many other combinatorial concepts, such as permutations, (semi-) standard Young tableaux, skew tableaux, Littlewood–Richardson fillings, and matrices over $ \mathbf N $ | ||
+ | or $ \{ 0,1 \} $ | ||
+ | with prescribed row and column sums. On the other hand, any picture gives rise to a semi-standard skew tableau by projecting its images onto their first coordinate. For any skew diagrams $ \chi $, | ||
+ | $ \psi $, | ||
+ | the number of pictures $ \chi \rightarrow \psi $ | ||
+ | is equal to the [[Intertwining number|intertwining number]] of representations $ V _ \chi $ | ||
+ | and $ V _ \psi $ | ||
+ | of $ S _ {n} $, | ||
+ | or of $ { \mathop{\rm GL} } _ {m} $, | ||
+ | see [[#References|[a5]]]. In particular, the number of pictures from $ \lambda \setminus \mu $ | ||
+ | to $ \nu $, | ||
+ | for Young diagrams $ \lambda $, | ||
+ | $ \mu $, | ||
+ | $ \nu $, | ||
+ | is the multiplicity of the [[Irreducible representation|irreducible representation]] $ V _ \lambda $ | ||
+ | of $ { \mathop{\rm GL} } _ {m} $ | ||
+ | in $ V _ \mu \otimes V _ \nu $; | ||
+ | this is essentially the Littlewood–Richardson rule. | ||
+ | |||
+ | There is a natural bijection between pictures $ f : \chi \rightarrow \psi $, | ||
+ | for arbitrary skew shapes $ \chi $, | ||
+ | $ \psi $, | ||
+ | and pairs of pictures $ p : \lambda \rightarrow \psi $ | ||
+ | and $ q : \chi \rightarrow \lambda $, | ||
+ | for some Young diagram $ \lambda $. | ||
+ | This is a generalization of the [[Robinson–Schensted correspondence|Robinson–Schensted correspondence]], and it agrees with the intertwining number interpretation. It also gives a decomposition of skew Schur polynomials into ordinary Schur polynomials, generalizing the decomposition of the character of $ V ^ {\otimes n } $ | ||
+ | mentioned in [[Robinson–Schensted correspondence|Robinson–Schensted correspondence]], and thereby provides a proof of the Littlewood–Richardson rule; this is closely related to the reason that correspondence was originally introduced in [[#References|[a3]]]. Like the $ P $- | ||
+ | symbol in the ordinary Robinson–Schensted correspondence, the picture $ p $ | ||
+ | can not only be computed from $ f $ | ||
+ | by an insertion procedure, but also by using the [[Jeu de taquin|jeu de taquin]] (see [[#References|[a4]]]), to gradually transform the domain $ \chi $ | ||
+ | into a Young diagram $ \lambda $. | ||
+ | By the symmetry $ f \leftrightarrow f ^ {- 1 } $, | ||
+ | the picture $ q $ | ||
+ | can also be computed by the jeu de taquin at the image side, to transform the image $ \psi $ | ||
+ | into $ \lambda $. | ||
+ | The steps of these two forms of the jeu de taquin commute with each other, and this provides a key to many properties of the Robinson–Schensted correspondence [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Fomin, C. Greene, "A Littlewood–Richardson miscellany" ''European J. Combinatorics'' , '''14''' (1993) pp. 191–212</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.A.A. van Leeuwen, "Tableau algorithms defined naturally for pictures" ''Discrete Math.'' , '''157''' (1996) pp. 321–362</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. de B. Robinson, "On the representations of the symmetric group" ''Amer. J. Math.'' , '''60''' (1938) pp. 745–760</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.P. Schützenberger, "La correspondance de Robinson" D. Foata (ed.) , ''Combinatoire et Représentation du Groupe Symétrique'' , ''Lecture Notes in Mathematics'' , '''579''' , Springer (1976) pp. 59–113</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.V. Zelevinsky, "A generalisation of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence" ''J. Algebra'' , '''69''' (1981) pp. 82–94</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Fomin, C. Greene, "A Littlewood–Richardson miscellany" ''European J. Combinatorics'' , '''14''' (1993) pp. 191–212</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.A.A. van Leeuwen, "Tableau algorithms defined naturally for pictures" ''Discrete Math.'' , '''157''' (1996) pp. 321–362</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. de B. Robinson, "On the representations of the symmetric group" ''Amer. J. Math.'' , '''60''' (1938) pp. 745–760</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.P. Schützenberger, "La correspondance de Robinson" D. Foata (ed.) , ''Combinatoire et Représentation du Groupe Symétrique'' , ''Lecture Notes in Mathematics'' , '''579''' , Springer (1976) pp. 59–113</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.V. Zelevinsky, "A generalisation of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence" ''J. Algebra'' , '''69''' (1981) pp. 82–94</TD></TR></table> |
Latest revision as of 08:06, 6 June 2020
A class of bijections (cf. Bijection) between subsets of $ \mathbf Z \times \mathbf Z $,
namely skew diagrams. A skew diagram is a finite subset $ S \subset \mathbf Z \times \mathbf Z $
such that $ x \leq y \leq z $
with $ x,z \in S $
implies $ y \in S $,
where "≤" is the coordinatewise partial ordering of $ \mathbf Z \times \mathbf Z $;
a typical skew diagram is the difference $ \lambda \setminus \mu $
of two Young diagrams (cf. Young diagram) $ \lambda, \mu $
with $ \mu \subset \lambda $.
The definition of pictures also uses another partial ordering "≤" on $ \mathbf Z \times \mathbf Z $,
given by
$$ ( i,j ) \leq _ \swarrow ( i ^ \prime ,j ^ \prime ) \iff i \geq i ^ \prime \wedge j \leq j ^ \prime $$
(sometimes the opposite ordering is used instead); a bijection $ f $ between two skew diagrams is a picture if $ x \leq y $ implies $ f ( x ) \leq _ \swarrow f ( y ) $ and $ u \leq v $ implies $ f ^ {- 1 } ( u ) \leq _ \swarrow f ^ {- 1 } ( v ) $. The set of all pictures has various symmetries, among which $ f \left\rightarrow f ^ {- 1 } $.
When domain and image are fixed to certain shapes, pictures become equivalent to many other combinatorial concepts, such as permutations, (semi-) standard Young tableaux, skew tableaux, Littlewood–Richardson fillings, and matrices over $ \mathbf N $ or $ \{ 0,1 \} $ with prescribed row and column sums. On the other hand, any picture gives rise to a semi-standard skew tableau by projecting its images onto their first coordinate. For any skew diagrams $ \chi $, $ \psi $, the number of pictures $ \chi \rightarrow \psi $ is equal to the intertwining number of representations $ V _ \chi $ and $ V _ \psi $ of $ S _ {n} $, or of $ { \mathop{\rm GL} } _ {m} $, see [a5]. In particular, the number of pictures from $ \lambda \setminus \mu $ to $ \nu $, for Young diagrams $ \lambda $, $ \mu $, $ \nu $, is the multiplicity of the irreducible representation $ V _ \lambda $ of $ { \mathop{\rm GL} } _ {m} $ in $ V _ \mu \otimes V _ \nu $; this is essentially the Littlewood–Richardson rule.
There is a natural bijection between pictures $ f : \chi \rightarrow \psi $, for arbitrary skew shapes $ \chi $, $ \psi $, and pairs of pictures $ p : \lambda \rightarrow \psi $ and $ q : \chi \rightarrow \lambda $, for some Young diagram $ \lambda $. This is a generalization of the Robinson–Schensted correspondence, and it agrees with the intertwining number interpretation. It also gives a decomposition of skew Schur polynomials into ordinary Schur polynomials, generalizing the decomposition of the character of $ V ^ {\otimes n } $ mentioned in Robinson–Schensted correspondence, and thereby provides a proof of the Littlewood–Richardson rule; this is closely related to the reason that correspondence was originally introduced in [a3]. Like the $ P $- symbol in the ordinary Robinson–Schensted correspondence, the picture $ p $ can not only be computed from $ f $ by an insertion procedure, but also by using the jeu de taquin (see [a4]), to gradually transform the domain $ \chi $ into a Young diagram $ \lambda $. By the symmetry $ f \leftrightarrow f ^ {- 1 } $, the picture $ q $ can also be computed by the jeu de taquin at the image side, to transform the image $ \psi $ into $ \lambda $. The steps of these two forms of the jeu de taquin commute with each other, and this provides a key to many properties of the Robinson–Schensted correspondence [a2].
References
[a1] | S. Fomin, C. Greene, "A Littlewood–Richardson miscellany" European J. Combinatorics , 14 (1993) pp. 191–212 |
[a2] | M.A.A. van Leeuwen, "Tableau algorithms defined naturally for pictures" Discrete Math. , 157 (1996) pp. 321–362 |
[a3] | G. de B. Robinson, "On the representations of the symmetric group" Amer. J. Math. , 60 (1938) pp. 745–760 |
[a4] | M.P. Schützenberger, "La correspondance de Robinson" D. Foata (ed.) , Combinatoire et Représentation du Groupe Symétrique , Lecture Notes in Mathematics , 579 , Springer (1976) pp. 59–113 |
[a5] | A.V. Zelevinsky, "A generalisation of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence" J. Algebra , 69 (1981) pp. 82–94 |
Pictures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pictures&oldid=48180