Difference between revisions of "Kernel of a matrix"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k1100901.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/K110/K.1100090 Kernel of a matrix | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | The kernel of the matrix | + | A [[Matrix|matrix]] $ A = ( a _ {ij } ) $ |
+ | of size $ n \times m $ | ||
+ | over a [[Field|field]] $ K $ | ||
+ | defines a linear function $ \alpha : {K ^ {m} } \rightarrow {K ^ {n} } $ | ||
+ | between the standard vector spaces $ K ^ {m} $ | ||
+ | and $ K ^ {n} $ | ||
+ | by the well-known formula | ||
+ | |||
+ | $$ | ||
+ | \alpha \left ( | ||
+ | |||
+ | \begin{array}{c} | ||
+ | v _ {1} \\ | ||
+ | \vdots \\ | ||
+ | v _ {m} \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) = \left ( | ||
+ | |||
+ | \begin{array}{c} | ||
+ | \sum a _ {1i } v _ {i} \\ | ||
+ | \vdots \\ | ||
+ | \sum a _ {ni } v _ {i} \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right ) . | ||
+ | $$ | ||
+ | |||
+ | The kernel of the matrix $ A $ | ||
+ | is the kernel of the linear mapping $ \alpha $. | ||
+ | The kernel of $ A $( | ||
+ | respectively, of $ \alpha $) | ||
+ | is also called the null space or nullspace of $ A $( | ||
+ | respectively, $ \alpha $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Strang, "Linear algebra and its applications" , Harcourt–Brace–Jovanovich (1988) pp. 92</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Schneider, G.P. Barker, "Matrices and linear algebra" , Dover, reprint (1989) pp. 215</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Noble, J.W. Daniel, "Applied linear algebra" , Prentice-Hall (1977) pp. 157</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Ch.G. Cullen, "Matrices and linear transformations" , Dover, reprint (1990) pp. 187</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Strang, "Linear algebra and its applications" , Harcourt–Brace–Jovanovich (1988) pp. 92</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Schneider, G.P. Barker, "Matrices and linear algebra" , Dover, reprint (1989) pp. 215</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Noble, J.W. Daniel, "Applied linear algebra" , Prentice-Hall (1977) pp. 157</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Ch.G. Cullen, "Matrices and linear transformations" , Dover, reprint (1990) pp. 187</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
A matrix $ A = ( a _ {ij } ) $
of size $ n \times m $
over a field $ K $
defines a linear function $ \alpha : {K ^ {m} } \rightarrow {K ^ {n} } $
between the standard vector spaces $ K ^ {m} $
and $ K ^ {n} $
by the well-known formula
$$ \alpha \left ( \begin{array}{c} v _ {1} \\ \vdots \\ v _ {m} \\ \end{array} \right ) = \left ( \begin{array}{c} \sum a _ {1i } v _ {i} \\ \vdots \\ \sum a _ {ni } v _ {i} \\ \end{array} \right ) . $$
The kernel of the matrix $ A $ is the kernel of the linear mapping $ \alpha $. The kernel of $ A $( respectively, of $ \alpha $) is also called the null space or nullspace of $ A $( respectively, $ \alpha $).
References
[a1] | G. Strang, "Linear algebra and its applications" , Harcourt–Brace–Jovanovich (1988) pp. 92 |
[a2] | H. Schneider, G.P. Barker, "Matrices and linear algebra" , Dover, reprint (1989) pp. 215 |
[a3] | B. Noble, J.W. Daniel, "Applied linear algebra" , Prentice-Hall (1977) pp. 157 |
[a4] | Ch.G. Cullen, "Matrices and linear transformations" , Dover, reprint (1990) pp. 187 |
Kernel of a matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_of_a_matrix&oldid=47489