Difference between revisions of "Generalized function, derivative of a"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | g0438201.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/G043/G.0403820 Generalized function, derivative of a | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | of | + | A weak extension of the operation of ordinary [[Differentiation|differentiation]]. Let $ f $ |
+ | be a [[Generalized function|generalized function]], $ f \in D ^ \prime ( O) $. | ||
+ | The generalized (weak) derivative | ||
− | + | $$ | |
+ | D ^ \alpha f = \ | ||
− | + | \frac{\partial ^ {| \alpha | } f }{\partial x _ {1} ^ {\alpha _ {1} } \dots | |
+ | \partial x _ {n} ^ {\alpha _ {n} } } | ||
+ | ,\ \ | ||
+ | | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} , | ||
+ | $$ | ||
− | + | of order $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $ | |
+ | is defined by the equation | ||
− | + | $$ \tag{* } | |
+ | ( D ^ \alpha f , \phi ) = \ | ||
+ | ( - 1 ) ^ {| \alpha | } | ||
+ | ( f , D ^ \alpha \phi ) ,\ \ | ||
+ | \phi \in D ( O) . | ||
+ | $$ | ||
+ | |||
+ | Since the operation $ \phi \mapsto (- 1) ^ {| \alpha | } D ^ \alpha \phi $ | ||
+ | is linear and continuous from $ D ( O) $ | ||
+ | into $ D ( O) $, | ||
+ | the functional $ D ^ \alpha f $ | ||
+ | defined by the right-hand side of (*) is a generalized function in $ D ^ \prime ( O) $. | ||
+ | If $ f \in C ^ {p} ( O) $, | ||
+ | then $ D ^ \alpha f \in C ^ {p - | \alpha | } ( O) $ | ||
+ | for all $ \alpha $ | ||
+ | with $ | \alpha | \leq p $. | ||
+ | |||
+ | The following properties hold for the derivatives of a generalized function: the operation $ f \mapsto D ^ \alpha f $ | ||
+ | is linear and continuous from $ D ^ \prime ( O) $ | ||
+ | into $ D ^ \prime ( O) $; | ||
+ | any generalized function in $ D ^ \prime ( O) $ | ||
+ | is infinitely differentiable (in the generalized sense); the result of differentiation does not depend on the order; the [[Leibniz formula|Leibniz formula]] is valid for the differentiation of a product $ af $, | ||
+ | when $ a \in C ^ \infty ( O) $; | ||
+ | and $ \supp D ^ \alpha f \subset \supp f $. | ||
+ | |||
+ | Let $ f \in L _ { \mathop{\rm loc} } ^ {1} ( O) $. | ||
+ | It may happen that a certain generalized derivative can be identified with some $ L _ { \mathop{\rm loc} } ^ {1} ( O) $- | ||
+ | function. In this case $ D ^ \alpha f ( x) $ | ||
+ | is a [[Generalized derivative|generalized derivative]] of function type. | ||
===Examples.=== | ===Examples.=== | ||
+ | 1) $ \theta ^ \prime = \delta $, | ||
+ | where $ \theta $ | ||
+ | is the Heaviside function and $ \delta $ | ||
+ | is the Dirac function (cf. [[Delta-function|Delta-function]] for both). | ||
− | + | 2) The general solution of the equation $ u ^ \prime = 0 $ | |
− | + | in the class $ D ^ \prime $ | |
− | 2) The general solution of the equation | + | is an arbitrary constant. |
3) The [[Trigonometric series|trigonometric series]] | 3) The [[Trigonometric series|trigonometric series]] | ||
− | + | $$ | |
+ | \sum _ {k = - \infty } ^ \infty a _ {k} e ^ {ikx} ,\ \ | ||
+ | | a _ {k} | \leq A ( 1 + | k | ) ^ {m} , | ||
+ | $$ | ||
− | converges in | + | converges in $ D ^ \prime $ |
+ | and it can be differentiated term-by-term in $ D ^ \prime $ | ||
+ | infinitely many times. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''1''' , Hermann (1950) {{MR|0035918}} {{ZBL|0037.07301}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian) {{MR|0165337}} {{ZBL|0123.09003}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''1''' , Hermann (1950) {{MR|0035918}} {{ZBL|0037.07301}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian) {{MR|0165337}} {{ZBL|0123.09003}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5 {{MR|0617913}} {{ZBL|0435.46002}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1''' , Springer (1983) {{MR|0717035}} {{MR|0705278}} {{ZBL|0521.35002}} {{ZBL|0521.35001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5 {{MR|0617913}} {{ZBL|0435.46002}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1''' , Springer (1983) {{MR|0717035}} {{MR|0705278}} {{ZBL|0521.35002}} {{ZBL|0521.35001}} </TD></TR></table> |
Revision as of 19:41, 5 June 2020
A weak extension of the operation of ordinary differentiation. Let $ f $
be a generalized function, $ f \in D ^ \prime ( O) $.
The generalized (weak) derivative
$$ D ^ \alpha f = \ \frac{\partial ^ {| \alpha | } f }{\partial x _ {1} ^ {\alpha _ {1} } \dots \partial x _ {n} ^ {\alpha _ {n} } } ,\ \ | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} , $$
of order $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $ is defined by the equation
$$ \tag{* } ( D ^ \alpha f , \phi ) = \ ( - 1 ) ^ {| \alpha | } ( f , D ^ \alpha \phi ) ,\ \ \phi \in D ( O) . $$
Since the operation $ \phi \mapsto (- 1) ^ {| \alpha | } D ^ \alpha \phi $ is linear and continuous from $ D ( O) $ into $ D ( O) $, the functional $ D ^ \alpha f $ defined by the right-hand side of (*) is a generalized function in $ D ^ \prime ( O) $. If $ f \in C ^ {p} ( O) $, then $ D ^ \alpha f \in C ^ {p - | \alpha | } ( O) $ for all $ \alpha $ with $ | \alpha | \leq p $.
The following properties hold for the derivatives of a generalized function: the operation $ f \mapsto D ^ \alpha f $ is linear and continuous from $ D ^ \prime ( O) $ into $ D ^ \prime ( O) $; any generalized function in $ D ^ \prime ( O) $ is infinitely differentiable (in the generalized sense); the result of differentiation does not depend on the order; the Leibniz formula is valid for the differentiation of a product $ af $, when $ a \in C ^ \infty ( O) $; and $ \supp D ^ \alpha f \subset \supp f $.
Let $ f \in L _ { \mathop{\rm loc} } ^ {1} ( O) $. It may happen that a certain generalized derivative can be identified with some $ L _ { \mathop{\rm loc} } ^ {1} ( O) $- function. In this case $ D ^ \alpha f ( x) $ is a generalized derivative of function type.
Examples.
1) $ \theta ^ \prime = \delta $, where $ \theta $ is the Heaviside function and $ \delta $ is the Dirac function (cf. Delta-function for both).
2) The general solution of the equation $ u ^ \prime = 0 $ in the class $ D ^ \prime $ is an arbitrary constant.
3) The trigonometric series
$$ \sum _ {k = - \infty } ^ \infty a _ {k} e ^ {ikx} ,\ \ | a _ {k} | \leq A ( 1 + | k | ) ^ {m} , $$
converges in $ D ^ \prime $ and it can be differentiated term-by-term in $ D ^ \prime $ infinitely many times.
References
[1] | L. Schwartz, "Théorie des distributions" , 1 , Hermann (1950) MR0035918 Zbl 0037.07301 |
[2] | S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian) MR0165337 Zbl 0123.09003 |
Comments
References
[a1] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5 MR0617913 Zbl 0435.46002 |
[a2] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) MR0717035 MR0705278 Zbl 0521.35002 Zbl 0521.35001 |
Generalized function, derivative of a. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generalized_function,_derivative_of_a&oldid=47071