Namespaces
Variants
Actions

Difference between revisions of "Gel'fond-Baker method"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g1100902.png
 +
$#A+1 = 86 n = 0
 +
$#C+1 = 86 : ~/encyclopedia/old_files/data/G110/G.1100090 Gel\AApfond\ANDBaker method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''for Diophantine equations''
 
''for Diophantine equations''
  
 
One of the most efficient methods for obtaining explicit upper bounds on the size of integer solutions of some broad classes of [[Diophantine equations|Diophantine equations]] arises from the theory of transcendental numbers, from the solution by A.O. Gel'fond of Hilbert's seventh problem and from subsequent work of A. Baker. The Gel'fond–Baker method also incorporates ideas due to C.L. Siegel, K. Mahler and S. Lang. From this method, explicit upper bounds have been derived for:
 
One of the most efficient methods for obtaining explicit upper bounds on the size of integer solutions of some broad classes of [[Diophantine equations|Diophantine equations]] arises from the theory of transcendental numbers, from the solution by A.O. Gel'fond of Hilbert's seventh problem and from subsequent work of A. Baker. The Gel'fond–Baker method also incorporates ideas due to C.L. Siegel, K. Mahler and S. Lang. From this method, explicit upper bounds have been derived for:
  
1) integer points on curves of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100903.png" /> (effective versions of Siegel's theorem, due to Baker, J. Coates and W.M. Schmidt); [[#References|[a2]]], Chapt. IV, Sect. 12;
+
1) integer points on curves of genus 0 $
 +
and $  1 $(
 +
effective versions of Siegel's theorem, due to Baker, J. Coates and W.M. Schmidt); [[#References|[a2]]], Chapt. IV, Sect. 12;
  
2) Thue equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100904.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100905.png" /> is a homogeneous polynomial with algebraic coefficients, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100906.png" /> is a fixed non-zero algebraic number, and the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100907.png" /> has at least three distinct roots; [[#References|[a1]]], Chapt. 5; [[#References|[a2]]], Chapt. 3; [[#References|[a3]]], Chapt. 4–5;
+
2) Thue equations $  F ( x,y ) = k $,  
 +
where $  F $
 +
is a homogeneous polynomial with algebraic coefficients, $  k $
 +
is a fixed non-zero algebraic number, and the polynomial $  F ( X,1 ) $
 +
has at least three distinct roots; [[#References|[a1]]], Chapt. 5; [[#References|[a2]]], Chapt. 3; [[#References|[a3]]], Chapt. 4–5;
  
3) hyper-elliptic and super-elliptic equations, namely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100908.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g1100909.png" /> is a fixed integer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009010.png" /> is a polynomial with algebraic coefficients, which define curves of positive genus. This is the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009012.png" /> has at least three distinct roots or when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009014.png" /> has at least two distinct roots; [[#References|[a2]]], Chapt. 4; [[#References|[a3]]], Chapt. 6. The method also applies to some classes of norm-form equations in more than two variables (by the work of K. Győry).
+
3) hyper-elliptic and super-elliptic equations, namely $  y  ^ {k} = f ( x ) $
 +
where $  k $
 +
is a fixed integer and $  f ( x ) $
 +
is a polynomial with algebraic coefficients, which define curves of positive genus. This is the case when $  k = 2 $
 +
and $  f ( x ) $
 +
has at least three distinct roots or when $  k \geq  3 $
 +
and $  f ( x ) $
 +
has at least two distinct roots; [[#References|[a2]]], Chapt. 4; [[#References|[a3]]], Chapt. 6. The method also applies to some classes of norm-form equations in more than two variables (by the work of K. Győry).
  
The bounds obtained from this method are typically extremely large, and some further results on [[Diophantine approximations|Diophantine approximations]] are required to be able to completely determine all the solutions. Upper estimates are obtained for the height of the solutions, either in the ring of integers of a fixed algebraic number [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009015.png" />, or, more generally, in the ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009016.png" />-integers, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009017.png" /> is a fixed finite set of prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009018.png" /> (cf. also [[Ideal|Ideal]]; [[Prime ideal|Prime ideal]]). This means that a denominator for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009020.png" /> is allowed, but is required to be the product of primes from a fixed finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009021.png" />. This generalizes ordinary integers and units, which arise from taking for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009022.png" /> the empty set. For instance, for the field of rational numbers, given a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009023.png" /> of prime numbers, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009025.png" />-integers are the rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009026.png" /> such that all prime divisors of the denominator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009027.png" /> belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009028.png" />, while the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009030.png" />-units are the rational numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009031.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009032.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009033.png" />).
+
The bounds obtained from this method are typically extremely large, and some further results on [[Diophantine approximations|Diophantine approximations]] are required to be able to completely determine all the solutions. Upper estimates are obtained for the height of the solutions, either in the ring of integers of a fixed algebraic number [[Field|field]] $  K $,  
 +
or, more generally, in the ring of $  S $-
 +
integers, where $  S $
 +
is a fixed finite set of prime ideals of $  K $(
 +
cf. also [[Ideal|Ideal]]; [[Prime ideal|Prime ideal]]). This means that a denominator for $  x $
 +
and $  y $
 +
is allowed, but is required to be the product of primes from a fixed finite set $  S $.  
 +
This generalizes ordinary integers and units, which arise from taking for $  S $
 +
the empty set. For instance, for the field of rational numbers, given a finite set $  S = \{ p _ {1} \dots p _ {s} \} $
 +
of prime numbers, the $  S $-
 +
integers are the rational numbers $  {a / b } $
 +
such that all prime divisors of the denominator $  b $
 +
belong to $  S $,  
 +
while the $  S $-
 +
units are the rational numbers of the form $  p _ {1} ^ {k _ {1} } \dots p _ {s} ^ {k _ {s} } $
 +
with $  k _ {j} \in \mathbf Z $(
 +
$  1 \leq  j \leq  s $).
  
Furthermore, the method can be extended in some cases to allow the exponents on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009035.png" /> to vary. The most celebrated example is Tijdeman's theorem on the Catalan equation [[#References|[a1]]], Chapt. 12, [[#References|[a3]]], Chapt. 7, Sect. 3: There are only finitely many tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009036.png" /> of integers, all of them <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009037.png" />, satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009038.png" />.
+
Furthermore, the method can be extended in some cases to allow the exponents on $  x $
 +
and $  y $
 +
to vary. The most celebrated example is Tijdeman's theorem on the Catalan equation [[#References|[a1]]], Chapt. 12, [[#References|[a3]]], Chapt. 7, Sect. 3: There are only finitely many tuples $  ( x,y,p,q ) $
 +
of integers, all of them $  \geq  2 $,  
 +
satisfying $  x  ^ {p} - y  ^ {q} = 1 $.
  
According to Pillai's conjecture [[#References|[a1]]], p. 201, [[#References|[a2]]], p. 207, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009039.png" /> the same should hold for the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009040.png" />.
+
According to Pillai's conjecture [[#References|[a1]]], p. 201, [[#References|[a2]]], p. 207, for each $  k \geq  2 $
 +
the same should hold for the equation $  x  ^ {p} - y  ^ {q} = k $.
  
To demonstrate Baker's method, consider the Thue equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009041.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009042.png" /> is a fixed non-zero algebraic number, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009043.png" /> is a homogeneous polynomial with algebraic coefficients such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009044.png" /> has at least three distinct roots, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009047.png" />. The unknowns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009049.png" /> are algebraic integers in a number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009050.png" />, which is assumed to contain not only the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009051.png" />, but also the coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009052.png" /> as well as the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009053.png" />. Then one may write, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009055.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009056.png" /> belongs to a fixed finite subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009057.png" /> (independent of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009058.png" />), while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009061.png" /> are (unknown) units in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009062.png" />. Eliminating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009064.png" /> from these three equations yields the relation
+
To demonstrate Baker's method, consider the Thue equation $  F ( x,y ) = k $,  
 +
where $  k $
 +
is a fixed non-zero algebraic number, while $  F $
 +
is a homogeneous polynomial with algebraic coefficients such that $  F ( X,1 ) $
 +
has at least three distinct roots, $  \alpha _ {1} $,  
 +
$  \alpha _ {2} $,  
 +
$  \alpha _ {3} $.  
 +
The unknowns $  x $
 +
and $  y $
 +
are algebraic integers in a number field $  K $,  
 +
which is assumed to contain not only the number $  k $,  
 +
but also the coefficients of $  F $
 +
as well as the roots of $  F ( X,1 ) $.  
 +
Then one may write, for $  i = 1,2,3 $,  
 +
$  x - \alpha _ {i} y = k _ {i} u _ {i} $,  
 +
where $  k _ {i} $
 +
belongs to a fixed finite subset of $  K $(
 +
independent of the solution $  ( x,y ) $),  
 +
while $  u _ {1} $,  
 +
$  u _ {2} $,  
 +
$  u _ {3} $
 +
are (unknown) units in $  K $.  
 +
Eliminating $  x $
 +
and $  y $
 +
from these three equations yields the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009065.png" /></td> </tr></table>
+
$$
 +
k _ {1} ( \alpha _ {3} - \alpha _ {2} ) u _ {1} + k _ {2} ( \alpha _ {1} - \alpha _ {3} ) u _ {2} + k _ {3} ( \alpha _ {2} - \alpha _ {1} ) u _ {3} = 0.
 +
$$
  
Therefore, a key step in the Gel'fond–Baker method is the following result, which deals with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009067.png" />-unit equation: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009068.png" /> is a number field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009069.png" /> is a finite set of prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009070.png" />, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009071.png" /> has only finitely many solutions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009072.png" />-units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009073.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009074.png" />. Moreover, explicit bounds for the size of the solutions can be given.
+
Therefore, a key step in the Gel'fond–Baker method is the following result, which deals with the $  S $-
 +
unit equation: If $  K $
 +
is a number field and $  S $
 +
is a finite set of prime ideals of $  K $,  
 +
the equation $  x + y = 1 $
 +
has only finitely many solutions in $  S $-
 +
units $  ( x,y ) $
 +
of $  K $.  
 +
Moreover, explicit bounds for the size of the solutions can be given.
  
The proof of this result relies on an estimate from transcendental number theory. Write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009076.png" /> using a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009077.png" /> of the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009078.png" />-units modulo torsion. Then a  "large"  solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009079.png" /> to the Diophantine equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009080.png" /> gives rise to a  "small"  value for a number of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009081.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009082.png" /> is a root of unity and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009083.png" /> are rational integers. The so-called  "theory of linear forms in logarithms"  (cf. [[Linear form in logarithms|Linear form in logarithms]]) provides a lower bound for such numbers, which is sharp in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009084.png" />. This lower bound, together with the link between large solutions and small values, then provides an upper bound for the size of solutions.
+
The proof of this result relies on an estimate from transcendental number theory. Write $  x $
 +
and $  y $
 +
using a basis $  \epsilon _ {1} \dots \epsilon _ {r} $
 +
of the group of $  S $-
 +
units modulo torsion. Then a  "large"  solution $  ( x,y ) $
 +
to the Diophantine equation $  F ( x,y ) = k $
 +
gives rise to a  "small"  value for a number of the form $  | {\zeta \epsilon _ {1} ^ {b _ {1} } \dots \epsilon _ {r} ^ {b _ {r} } - 1 } | $,  
 +
where $  \zeta $
 +
is a root of unity and $  b _ {1} \dots b _ {r} $
 +
are rational integers. The so-called  "theory of linear forms in logarithms"  (cf. [[Linear form in logarithms|Linear form in logarithms]]) provides a lower bound for such numbers, which is sharp in terms of $  \max  \{ | {b _ {1} } | \dots | {b _ {r} } | \} $.  
 +
This lower bound, together with the link between large solutions and small values, then provides an upper bound for the size of solutions.
  
The Schmidt subspace theorem and its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009085.png" />-adic variants by H.P. Schlickewei [[#References|[a2]]], Chapt.5, Sect. 1, imply more generally that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009086.png" />, the Diophantine equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009087.png" /> has only finitely many solutions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009088.png" />-units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009089.png" /> (one considers only solutions where no subsum on the left-hand side vanishes). But for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009090.png" /> the result is not effective: upper bounds for the number of solutions can be given, but no bound for the size of the solutions is known in general.
+
The Schmidt subspace theorem and its $  p $-
 +
adic variants by H.P. Schlickewei [[#References|[a2]]], Chapt.5, Sect. 1, imply more generally that for each $  n \geq  2 $,  
 +
the Diophantine equation $  x _ {1} + \dots + x _ {n} = 1 $
 +
has only finitely many solutions in $  S $-
 +
units of $  K $(
 +
one considers only solutions where no subsum on the left-hand side vanishes). But for $  n \geq  3 $
 +
the result is not effective: upper bounds for the number of solutions can be given, but no bound for the size of the solutions is known in general.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.N. Shorey,  R. Tijdeman,  "Exponential diophantine equations" , ''Tracts in Math.'' , '''87''' , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.M. Schmidt,  "Diophantine approximations and Diophantine equations" , ''Lecture Notes in Mathematics'' , '''1467''' , Springer  (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  V.G. Sprindžuk,  "Classical diophantine equations" , ''Lecture Notes in Mathematics'' , '''1559''' , Springer  (1993)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.N. Shorey,  R. Tijdeman,  "Exponential diophantine equations" , ''Tracts in Math.'' , '''87''' , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.M. Schmidt,  "Diophantine approximations and Diophantine equations" , ''Lecture Notes in Mathematics'' , '''1467''' , Springer  (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  V.G. Sprindžuk,  "Classical diophantine equations" , ''Lecture Notes in Mathematics'' , '''1559''' , Springer  (1993)  (In Russian)</TD></TR></table>

Latest revision as of 19:41, 5 June 2020


for Diophantine equations

One of the most efficient methods for obtaining explicit upper bounds on the size of integer solutions of some broad classes of Diophantine equations arises from the theory of transcendental numbers, from the solution by A.O. Gel'fond of Hilbert's seventh problem and from subsequent work of A. Baker. The Gel'fond–Baker method also incorporates ideas due to C.L. Siegel, K. Mahler and S. Lang. From this method, explicit upper bounds have been derived for:

1) integer points on curves of genus $ 0 $ and $ 1 $( effective versions of Siegel's theorem, due to Baker, J. Coates and W.M. Schmidt); [a2], Chapt. IV, Sect. 12;

2) Thue equations $ F ( x,y ) = k $, where $ F $ is a homogeneous polynomial with algebraic coefficients, $ k $ is a fixed non-zero algebraic number, and the polynomial $ F ( X,1 ) $ has at least three distinct roots; [a1], Chapt. 5; [a2], Chapt. 3; [a3], Chapt. 4–5;

3) hyper-elliptic and super-elliptic equations, namely $ y ^ {k} = f ( x ) $ where $ k $ is a fixed integer and $ f ( x ) $ is a polynomial with algebraic coefficients, which define curves of positive genus. This is the case when $ k = 2 $ and $ f ( x ) $ has at least three distinct roots or when $ k \geq 3 $ and $ f ( x ) $ has at least two distinct roots; [a2], Chapt. 4; [a3], Chapt. 6. The method also applies to some classes of norm-form equations in more than two variables (by the work of K. Győry).

The bounds obtained from this method are typically extremely large, and some further results on Diophantine approximations are required to be able to completely determine all the solutions. Upper estimates are obtained for the height of the solutions, either in the ring of integers of a fixed algebraic number field $ K $, or, more generally, in the ring of $ S $- integers, where $ S $ is a fixed finite set of prime ideals of $ K $( cf. also Ideal; Prime ideal). This means that a denominator for $ x $ and $ y $ is allowed, but is required to be the product of primes from a fixed finite set $ S $. This generalizes ordinary integers and units, which arise from taking for $ S $ the empty set. For instance, for the field of rational numbers, given a finite set $ S = \{ p _ {1} \dots p _ {s} \} $ of prime numbers, the $ S $- integers are the rational numbers $ {a / b } $ such that all prime divisors of the denominator $ b $ belong to $ S $, while the $ S $- units are the rational numbers of the form $ p _ {1} ^ {k _ {1} } \dots p _ {s} ^ {k _ {s} } $ with $ k _ {j} \in \mathbf Z $( $ 1 \leq j \leq s $).

Furthermore, the method can be extended in some cases to allow the exponents on $ x $ and $ y $ to vary. The most celebrated example is Tijdeman's theorem on the Catalan equation [a1], Chapt. 12, [a3], Chapt. 7, Sect. 3: There are only finitely many tuples $ ( x,y,p,q ) $ of integers, all of them $ \geq 2 $, satisfying $ x ^ {p} - y ^ {q} = 1 $.

According to Pillai's conjecture [a1], p. 201, [a2], p. 207, for each $ k \geq 2 $ the same should hold for the equation $ x ^ {p} - y ^ {q} = k $.

To demonstrate Baker's method, consider the Thue equation $ F ( x,y ) = k $, where $ k $ is a fixed non-zero algebraic number, while $ F $ is a homogeneous polynomial with algebraic coefficients such that $ F ( X,1 ) $ has at least three distinct roots, $ \alpha _ {1} $, $ \alpha _ {2} $, $ \alpha _ {3} $. The unknowns $ x $ and $ y $ are algebraic integers in a number field $ K $, which is assumed to contain not only the number $ k $, but also the coefficients of $ F $ as well as the roots of $ F ( X,1 ) $. Then one may write, for $ i = 1,2,3 $, $ x - \alpha _ {i} y = k _ {i} u _ {i} $, where $ k _ {i} $ belongs to a fixed finite subset of $ K $( independent of the solution $ ( x,y ) $), while $ u _ {1} $, $ u _ {2} $, $ u _ {3} $ are (unknown) units in $ K $. Eliminating $ x $ and $ y $ from these three equations yields the relation

$$ k _ {1} ( \alpha _ {3} - \alpha _ {2} ) u _ {1} + k _ {2} ( \alpha _ {1} - \alpha _ {3} ) u _ {2} + k _ {3} ( \alpha _ {2} - \alpha _ {1} ) u _ {3} = 0. $$

Therefore, a key step in the Gel'fond–Baker method is the following result, which deals with the $ S $- unit equation: If $ K $ is a number field and $ S $ is a finite set of prime ideals of $ K $, the equation $ x + y = 1 $ has only finitely many solutions in $ S $- units $ ( x,y ) $ of $ K $. Moreover, explicit bounds for the size of the solutions can be given.

The proof of this result relies on an estimate from transcendental number theory. Write $ x $ and $ y $ using a basis $ \epsilon _ {1} \dots \epsilon _ {r} $ of the group of $ S $- units modulo torsion. Then a "large" solution $ ( x,y ) $ to the Diophantine equation $ F ( x,y ) = k $ gives rise to a "small" value for a number of the form $ | {\zeta \epsilon _ {1} ^ {b _ {1} } \dots \epsilon _ {r} ^ {b _ {r} } - 1 } | $, where $ \zeta $ is a root of unity and $ b _ {1} \dots b _ {r} $ are rational integers. The so-called "theory of linear forms in logarithms" (cf. Linear form in logarithms) provides a lower bound for such numbers, which is sharp in terms of $ \max \{ | {b _ {1} } | \dots | {b _ {r} } | \} $. This lower bound, together with the link between large solutions and small values, then provides an upper bound for the size of solutions.

The Schmidt subspace theorem and its $ p $- adic variants by H.P. Schlickewei [a2], Chapt.5, Sect. 1, imply more generally that for each $ n \geq 2 $, the Diophantine equation $ x _ {1} + \dots + x _ {n} = 1 $ has only finitely many solutions in $ S $- units of $ K $( one considers only solutions where no subsum on the left-hand side vanishes). But for $ n \geq 3 $ the result is not effective: upper bounds for the number of solutions can be given, but no bound for the size of the solutions is known in general.

References

[a1] T.N. Shorey, R. Tijdeman, "Exponential diophantine equations" , Tracts in Math. , 87 , Cambridge Univ. Press (1986)
[a2] W.M. Schmidt, "Diophantine approximations and Diophantine equations" , Lecture Notes in Mathematics , 1467 , Springer (1991)
[a3] V.G. Sprindžuk, "Classical diophantine equations" , Lecture Notes in Mathematics , 1559 , Springer (1993) (In Russian)
How to Cite This Entry:
Gel'fond-Baker method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gel%27fond-Baker_method&oldid=47059
This article was adapted from an original article by M. Waldschmidt (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article