Namespaces
Variants
Actions

Difference between revisions of "Filtered module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401501.png" /> endowed with an increasing or decreasing filtration, that is, an increasing or decreasing family of submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401502.png" />. A filtration is called exhaustive if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401503.png" />, and separable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401504.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401505.png" /> is a submodule of a filtered module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401506.png" />, then filtrations are defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401507.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401508.png" /> in a natural way. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f0401509.png" /> is a [[Graded module|graded module]], then the submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015010.png" /> define an exhaustive separable decreasing filtration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015011.png" />. Conversely, with every filtered module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015012.png" /> endowed, for example, with a decreasing filtration, there is associated the graded module
+
<!--
 +
f0401501.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/F040/F.0400150 Filtered module
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015013.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015014.png" />. A filtration <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015015.png" /> constitutes a fundamental system of neighbourhoods of zero. Its topology is separable if and only if the filtration is separable, and discrete if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015016.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015017.png" />.
+
A module  $  M $
 +
endowed with an increasing or decreasing filtration, that is, an increasing or decreasing family of submodules  $  ( M _ {n} ) _ {n \in \mathbf Z }  $.
 +
A filtration is called exhaustive if  $  M = \cup _ {n \in \mathbf Z }  M _ {n} $,
 +
and separable if  $  \cap _ {n \in \mathbf Z }  M _ {n} = 0 $.  
 +
If  $  N $
 +
is a submodule of a filtered module  $  M $,
 +
then filtrations are defined on  $  N $
 +
and  $  M/N $
 +
in a natural way. If  $  M = \sum _ {n \in \mathbf Z }  M _ {(} n) $
 +
is a [[Graded module|graded module]], then the submodules  $  M _ {n} = \sum _ {i \geq  n }  M _ {(} i) $
 +
define an exhaustive separable decreasing filtration on  $  M $.  
 +
Conversely, with every filtered module  $  M $
 +
endowed, for example, with a decreasing filtration, there is associated the graded module
 +
 
 +
$$
 +
\mathop{\rm gr}  M  = \
 +
\oplus _ {n \in \mathbf Z }
 +
\mathop{\rm gr} _ {n}  M,
 +
$$
 +
 
 +
where  $  \mathop{\rm gr} _ {n}  M = M _ {n} /M _ {n + 1 }  $.  
 +
A filtration  $  ( M _ {n} ) _ {n \in \mathbf Z }  $
 +
constitutes a fundamental system of neighbourhoods of zero. Its topology is separable if and only if the filtration is separable, and discrete if and only if $  M _ {n} = 0 $
 +
for some $  n $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In the theory of rings of differential operators, e.g. Weyl algebras (cf. [[Weyl algebra|Weyl algebra]]), and also in connection with enveloping algebras of Lie algebras (cf. [[Lie algebra|Lie algebra]]), filtered modules play an important part. The notion most encountered there is that of a good filtration: An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015018.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015019.png" /> over a filtered ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015020.png" /> has good filtration if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015021.png" /> for some set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015024.png" />. A very nice class of good filtered modules consists of the holonomic modules, defined by a condition related to a bound on the growth of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015026.png" />. The associated graded module of a filtered module with good filtration is a finitely-generated graded module. If the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015027.png" /> has a discrete filtration and the associated graded ring is left-Noetherian, then a good filtration on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040150/f04015028.png" /> induces a good filtration on any submodule, and any filtration equivalent to a good one is again a good filtration on the module.
+
In the theory of rings of differential operators, e.g. Weyl algebras (cf. [[Weyl algebra|Weyl algebra]]), and also in connection with enveloping algebras of Lie algebras (cf. [[Lie algebra|Lie algebra]]), filtered modules play an important part. The notion most encountered there is that of a good filtration: An $  R $-
 +
module $  M $
 +
over a filtered ring $  R $
 +
has good filtration if $  M _ {n} = \sum _ {i=} 1  ^ {m} R _ {n - d _ {i}  } m _ {i} $
 +
for some set of elements $  m _ {i} $
 +
of $  M $
 +
and $  d _ {1} \dots d _ {m} \in \mathbf Z $.  
 +
A very nice class of good filtered modules consists of the holonomic modules, defined by a condition related to a bound on the growth of the $  M _ {n} $,  
 +
$  n \in \mathbf Z $.  
 +
The associated graded module of a filtered module with good filtration is a finitely-generated graded module. If the ring $  R $
 +
has a discrete filtration and the associated graded ring is left-Noetherian, then a good filtration on $  M $
 +
induces a good filtration on any submodule, and any filtration equivalent to a good one is again a good filtration on the module.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.-E. Björk,  "Rings of differential operators" , North-Holland  (1979)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Schapira,  "Microdifferential systems in the complex domain" , Springer  (1985)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.-E. Björk,  "Rings of differential operators" , North-Holland  (1979)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Schapira,  "Microdifferential systems in the complex domain" , Springer  (1985)</TD></TR></table>

Revision as of 19:39, 5 June 2020


A module $ M $ endowed with an increasing or decreasing filtration, that is, an increasing or decreasing family of submodules $ ( M _ {n} ) _ {n \in \mathbf Z } $. A filtration is called exhaustive if $ M = \cup _ {n \in \mathbf Z } M _ {n} $, and separable if $ \cap _ {n \in \mathbf Z } M _ {n} = 0 $. If $ N $ is a submodule of a filtered module $ M $, then filtrations are defined on $ N $ and $ M/N $ in a natural way. If $ M = \sum _ {n \in \mathbf Z } M _ {(} n) $ is a graded module, then the submodules $ M _ {n} = \sum _ {i \geq n } M _ {(} i) $ define an exhaustive separable decreasing filtration on $ M $. Conversely, with every filtered module $ M $ endowed, for example, with a decreasing filtration, there is associated the graded module

$$ \mathop{\rm gr} M = \ \oplus _ {n \in \mathbf Z } \mathop{\rm gr} _ {n} M, $$

where $ \mathop{\rm gr} _ {n} M = M _ {n} /M _ {n + 1 } $. A filtration $ ( M _ {n} ) _ {n \in \mathbf Z } $ constitutes a fundamental system of neighbourhoods of zero. Its topology is separable if and only if the filtration is separable, and discrete if and only if $ M _ {n} = 0 $ for some $ n $.

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)

Comments

In the theory of rings of differential operators, e.g. Weyl algebras (cf. Weyl algebra), and also in connection with enveloping algebras of Lie algebras (cf. Lie algebra), filtered modules play an important part. The notion most encountered there is that of a good filtration: An $ R $- module $ M $ over a filtered ring $ R $ has good filtration if $ M _ {n} = \sum _ {i=} 1 ^ {m} R _ {n - d _ {i} } m _ {i} $ for some set of elements $ m _ {i} $ of $ M $ and $ d _ {1} \dots d _ {m} \in \mathbf Z $. A very nice class of good filtered modules consists of the holonomic modules, defined by a condition related to a bound on the growth of the $ M _ {n} $, $ n \in \mathbf Z $. The associated graded module of a filtered module with good filtration is a finitely-generated graded module. If the ring $ R $ has a discrete filtration and the associated graded ring is left-Noetherian, then a good filtration on $ M $ induces a good filtration on any submodule, and any filtration equivalent to a good one is again a good filtration on the module.

References

[a1] J.-E. Björk, "Rings of differential operators" , North-Holland (1979)
[a2] P. Schapira, "Microdifferential systems in the complex domain" , Springer (1985)
How to Cite This Entry:
Filtered module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Filtered_module&oldid=46921
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article