Namespaces
Variants
Actions

Difference between revisions of "F-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A real [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100102.png" /> that is simultaneously a [[Lattice|lattice]] is called a vector lattice (or [[Riesz space|Riesz space]]) whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100103.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100104.png" /> is the lattice order) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100105.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100107.png" /> for all positive real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100108.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100109.png" /> is also an [[Algebra|algebra]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001012.png" />, the positive cone of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001013.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001014.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001016.png" />-algebra (a lattice-ordered algebra, Riesz algebra).
+
<!--
 +
f1100102.png
 +
$#A+1 = 53 n = 0
 +
$#C+1 = 53 : ~/encyclopedia/old_files/data/F110/F.1100010 \BMI f\EMI\AAhalgebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A Riesz algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001017.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001019.png" />-algebra (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001020.png" /> for  "function" ) whenever
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001021.png" /></td> </tr></table>
+
A real [[Vector space|vector space]]  $  A $
 +
that is simultaneously a [[Lattice|lattice]] is called a vector lattice (or [[Riesz space|Riesz space]]) whenever  $  x \leq  y $(
 +
$  \leq  $
 +
is the lattice order) implies  $  x + z \leq  y + z $
 +
for all  $  z \in A $
 +
and  $  ax \leq  ay $
 +
for all positive real numbers  $  a $.
 +
If  $  A $
 +
is also an [[Algebra|algebra]] and  $  zx \leq  yz $
 +
and  $  xz \leq  yz $
 +
for all  $  z \in A  ^ {+} $,
 +
the positive cone of  $  A $,
 +
then  $  A $
 +
is called an  $  l $-
 +
algebra (a lattice-ordered algebra, Riesz algebra).
 +
 
 +
A Riesz algebra  $  A $
 +
is called an  $  f $-
 +
algebra ( $  f $
 +
for  "function" ) whenever
 +
 
 +
$$
 +
\inf  ( x,y ) = 0 \Rightarrow  \inf  ( zx,y ) = \inf  ( xz,y ) = 0 ,  \forall z \in A  ^ {+} .
 +
$$
  
 
This notion was introduced by G. Birkhoff and R.S. Pierce in 1956.
 
This notion was introduced by G. Birkhoff and R.S. Pierce in 1956.
  
An important example of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001022.png" />-algebra is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001023.png" />, the space of continuous functions (cf. [[Continuous functions, space of|Continuous functions, space of]]) on some [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001024.png" />. Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001025.png" />-Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001026.png" />-algebra. A [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001027.png" /> on some vector lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001028.png" /> is called an orthomorphism whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001029.png" /> is the difference of two positive orthomorphisms; a positive orthomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001030.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001031.png" /> leaves the positive cone of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001032.png" /> invariant and satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001033.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001034.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001035.png" /> of all orthomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001036.png" /> is an important example of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001037.png" />-algebra in the theory of vector lattices.
+
An important example of an f $-
 +
algebra is $  A = C ( X ) $,  
 +
the space of continuous functions (cf. [[Continuous functions, space of|Continuous functions, space of]]) on some [[Topological space|topological space]] $  X $.  
 +
Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. f $-
 +
Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an f $-
 +
algebra. A [[Linear operator|linear operator]] $  T $
 +
on some vector lattice $  A $
 +
is called an orthomorphism whenever $  T $
 +
is the difference of two positive orthomorphisms; a positive orthomorphism $  S $
 +
on $  A $
 +
leaves the positive cone of $  A $
 +
invariant and satisfies $  \inf  ( Sx,y ) = 0 $
 +
whenever $  \inf  ( x,y ) = 0 $.  
 +
The space $  { \mathop{\rm Orth} } ( A ) $
 +
of all orthomorphisms of $  A $
 +
is an important example of an f $-
 +
algebra in the theory of vector lattices.
  
A vector lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001038.png" /> is termed Archimedean if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001039.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001040.png" />) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001041.png" />. Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001043.png" />-algebras are automatically commutative and associative. An Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001044.png" />-algebra with unit element is semi-prime (i.e., the only nilpotent element is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001046.png" />). The latter two properties are nice examples of the interplay between order properties and algebraic properties in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001047.png" />-algebra. Many properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001048.png" /> are inherited by an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001049.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001050.png" /> with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001051.png" />, then there exists a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001052.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001053.png" />) and the existence of an inverse: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001054.png" /> is the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001057.png" /> exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001058.png" />.
+
A vector lattice $  A $
 +
is termed Archimedean if 0 \leq  nx \leq  y $(
 +
$  n = 1,2, \dots $)  
 +
implies $  x = 0 $.  
 +
Archimedean f $-
 +
algebras are automatically commutative and associative. An Archimedean f $-
 +
algebra with unit element is semi-prime (i.e., the only nilpotent element is 0 $).  
 +
The latter two properties are nice examples of the interplay between order properties and algebraic properties in an f $-
 +
algebra. Many properties of $  C ( X ) $
 +
are inherited by an f $-
 +
algebra $  A $
 +
with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if $  x \in A  ^ {+} $,  
 +
then there exists a unique $  y \in A  ^ {+} $
 +
such that $  y ^ {( 2 ) } = x $)  
 +
and the existence of an inverse: if $  e $
 +
is the unit element of $  A $
 +
and $  e \leq  x $,  
 +
then $  x ^ {- 1 } $
 +
exists in $  A $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Birkhoff,  R.S. Pierce,  "Lattice-ordered rings"  ''An. Acad. Brasil. Ci.'' , '''28'''  (1956)  pp. 41–69</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.C. Zaanen,  "Riesz spaces" , '''II''' , North-Holland  (1983)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Birkhoff,  R.S. Pierce,  "Lattice-ordered rings"  ''An. Acad. Brasil. Ci.'' , '''28'''  (1956)  pp. 41–69</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.C. Zaanen,  "Riesz spaces" , '''II''' , North-Holland  (1983)</TD></TR></table>

Latest revision as of 19:38, 5 June 2020


A real vector space $ A $ that is simultaneously a lattice is called a vector lattice (or Riesz space) whenever $ x \leq y $( $ \leq $ is the lattice order) implies $ x + z \leq y + z $ for all $ z \in A $ and $ ax \leq ay $ for all positive real numbers $ a $. If $ A $ is also an algebra and $ zx \leq yz $ and $ xz \leq yz $ for all $ z \in A ^ {+} $, the positive cone of $ A $, then $ A $ is called an $ l $- algebra (a lattice-ordered algebra, Riesz algebra).

A Riesz algebra $ A $ is called an $ f $- algebra ( $ f $ for "function" ) whenever

$$ \inf ( x,y ) = 0 \Rightarrow \inf ( zx,y ) = \inf ( xz,y ) = 0 , \forall z \in A ^ {+} . $$

This notion was introduced by G. Birkhoff and R.S. Pierce in 1956.

An important example of an $ f $- algebra is $ A = C ( X ) $, the space of continuous functions (cf. Continuous functions, space of) on some topological space $ X $. Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. $ f $- Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an $ f $- algebra. A linear operator $ T $ on some vector lattice $ A $ is called an orthomorphism whenever $ T $ is the difference of two positive orthomorphisms; a positive orthomorphism $ S $ on $ A $ leaves the positive cone of $ A $ invariant and satisfies $ \inf ( Sx,y ) = 0 $ whenever $ \inf ( x,y ) = 0 $. The space $ { \mathop{\rm Orth} } ( A ) $ of all orthomorphisms of $ A $ is an important example of an $ f $- algebra in the theory of vector lattices.

A vector lattice $ A $ is termed Archimedean if $ 0 \leq nx \leq y $( $ n = 1,2, \dots $) implies $ x = 0 $. Archimedean $ f $- algebras are automatically commutative and associative. An Archimedean $ f $- algebra with unit element is semi-prime (i.e., the only nilpotent element is $ 0 $). The latter two properties are nice examples of the interplay between order properties and algebraic properties in an $ f $- algebra. Many properties of $ C ( X ) $ are inherited by an $ f $- algebra $ A $ with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if $ x \in A ^ {+} $, then there exists a unique $ y \in A ^ {+} $ such that $ y ^ {( 2 ) } = x $) and the existence of an inverse: if $ e $ is the unit element of $ A $ and $ e \leq x $, then $ x ^ {- 1 } $ exists in $ A $.

References

[a1] G. Birkhoff, R.S. Pierce, "Lattice-ordered rings" An. Acad. Brasil. Ci. , 28 (1956) pp. 41–69
[a2] A.C. Zaanen, "Riesz spaces" , II , North-Holland (1983)
How to Cite This Entry:
F-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=F-algebra&oldid=46895
This article was adapted from an original article by C.B. Huijsmans (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article