Difference between revisions of "Cokernel"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0231901.png | ||
+ | $#A+1 = 42 n = 0 | ||
+ | $#C+1 = 42 : ~/encyclopedia/old_files/data/C023/C.0203190 Cokernel | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of a morphism in a category'' | ''of a morphism in a category'' | ||
− | The concept dual to the concept of the [[Kernel of a morphism in a category|kernel of a morphism in a category]]. In categories of vector spaces, groups, rings, etc. it describes a largest [[Quotient object|quotient object]] of an object | + | The concept dual to the concept of the [[Kernel of a morphism in a category|kernel of a morphism in a category]]. In categories of vector spaces, groups, rings, etc. it describes a largest [[Quotient object|quotient object]] of an object $ B $ |
+ | that annihilates the image of a homomorphism $ \alpha : A \rightarrow B $. | ||
− | Let | + | Let $ \mathfrak K $ |
+ | be a category with null morphisms. A morphism $ \nu : B \rightarrow C $ | ||
+ | is called a cokernel of a morphism $ \alpha : A \rightarrow B $ | ||
+ | if $ \alpha \nu = 0 $ | ||
+ | and if any morphism $ \phi $ | ||
+ | such that $ \alpha \phi = 0 $ | ||
+ | can be expressed in unique way as $ \phi = \nu \psi $. | ||
+ | A cokernel of a morphism $ \alpha $ | ||
+ | is denoted by $ \mathop{\rm coker} \alpha $. | ||
− | If | + | If $ \nu = \mathop{\rm coker} \alpha $ |
+ | and $ \nu ^ \prime = \mathop{\rm coker} \alpha $ | ||
+ | then $ \nu ^ \prime = \nu \xi $ | ||
+ | for a unique isomorphism $ \xi $. | ||
− | Conversely, if | + | Conversely, if $ \nu = \mathop{\rm coker} \alpha $ |
+ | and $ \xi $ | ||
+ | is an isomorphism, then $ \nu ^ \prime = \nu \xi $ | ||
+ | is a cokernel of $ \alpha $. | ||
+ | Thus, all cokernels of a morphism $ \alpha $ | ||
+ | form a quotient object of $ B $, | ||
+ | which is denoted by $ \mathop{\rm Coker} \alpha $. | ||
+ | If $ \nu = \mathop{\rm coker} \alpha $, | ||
+ | then $ \nu $ | ||
+ | is a normal epimorphism. The converse need not be true. The cokernel of the zero morphism $ 0: A \rightarrow B $ | ||
+ | is $ 1 _ {B} $. | ||
+ | The cokernel of the unit morphism $ 1 _ {A} $ | ||
+ | exists if and only if $ \mathfrak K $ | ||
+ | contains a zero object. | ||
− | In a category | + | In a category $ \mathfrak K $ |
+ | with a zero object, a morphism $ \alpha : A \rightarrow B $ | ||
+ | has a cokernel if and only if $ \mathfrak K $ | ||
+ | contains a co-Cartesian square with respect to the morphisms $ \alpha $ | ||
+ | and $ 0: A \rightarrow 0 $. | ||
+ | This condition is satisfied, in particular, for any morphism of a right [[locally small category]] with a zero object and products. | ||
+ | ====Comments==== | ||
+ | The co-Cartesian square, or fibred sum or pushout, of two morphisms $ f: S \rightarrow A $, | ||
+ | $ g: S \rightarrow B $ | ||
+ | is (if it exists) a commutative diagram | ||
+ | $$ | ||
− | + | \begin{array}{rcc} | |
− | + | S & \rightarrow ^ { f } & A \\ | |
+ | {size - 3 g } \downarrow &{} & \downarrow {size - 3 {f _ {1} } } \\ | ||
+ | B & \rightarrow _ { g _ 1 } &B \amalg _ {S} A \\ | ||
+ | \end{array} | ||
− | + | $$ | |
− | such that for any two morphisms | + | such that for any two morphisms $ a: A \rightarrow Y $, |
+ | $ b: B \rightarrow Y $ | ||
+ | such that $ af = bg $ | ||
+ | there exists a unique morphism $ h: B \amalg _ {S} A \rightarrow Y $ | ||
+ | for which $ a = hf _ {1} $, | ||
+ | $ b = hg _ {1} $. |
Revision as of 17:45, 4 June 2020
of a morphism in a category
The concept dual to the concept of the kernel of a morphism in a category. In categories of vector spaces, groups, rings, etc. it describes a largest quotient object of an object $ B $ that annihilates the image of a homomorphism $ \alpha : A \rightarrow B $.
Let $ \mathfrak K $ be a category with null morphisms. A morphism $ \nu : B \rightarrow C $ is called a cokernel of a morphism $ \alpha : A \rightarrow B $ if $ \alpha \nu = 0 $ and if any morphism $ \phi $ such that $ \alpha \phi = 0 $ can be expressed in unique way as $ \phi = \nu \psi $. A cokernel of a morphism $ \alpha $ is denoted by $ \mathop{\rm coker} \alpha $.
If $ \nu = \mathop{\rm coker} \alpha $ and $ \nu ^ \prime = \mathop{\rm coker} \alpha $ then $ \nu ^ \prime = \nu \xi $ for a unique isomorphism $ \xi $.
Conversely, if $ \nu = \mathop{\rm coker} \alpha $ and $ \xi $ is an isomorphism, then $ \nu ^ \prime = \nu \xi $ is a cokernel of $ \alpha $. Thus, all cokernels of a morphism $ \alpha $ form a quotient object of $ B $, which is denoted by $ \mathop{\rm Coker} \alpha $. If $ \nu = \mathop{\rm coker} \alpha $, then $ \nu $ is a normal epimorphism. The converse need not be true. The cokernel of the zero morphism $ 0: A \rightarrow B $ is $ 1 _ {B} $. The cokernel of the unit morphism $ 1 _ {A} $ exists if and only if $ \mathfrak K $ contains a zero object.
In a category $ \mathfrak K $ with a zero object, a morphism $ \alpha : A \rightarrow B $ has a cokernel if and only if $ \mathfrak K $ contains a co-Cartesian square with respect to the morphisms $ \alpha $ and $ 0: A \rightarrow 0 $. This condition is satisfied, in particular, for any morphism of a right locally small category with a zero object and products.
Comments
The co-Cartesian square, or fibred sum or pushout, of two morphisms $ f: S \rightarrow A $, $ g: S \rightarrow B $ is (if it exists) a commutative diagram
$$ \begin{array}{rcc} S & \rightarrow ^ { f } & A \\ {size - 3 g } \downarrow &{} & \downarrow {size - 3 {f _ {1} } } \\ B & \rightarrow _ { g _ 1 } &B \amalg _ {S} A \\ \end{array} $$
such that for any two morphisms $ a: A \rightarrow Y $, $ b: B \rightarrow Y $ such that $ af = bg $ there exists a unique morphism $ h: B \amalg _ {S} A \rightarrow Y $ for which $ a = hf _ {1} $, $ b = hg _ {1} $.
Cokernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cokernel&oldid=46396