Difference between revisions of "Block"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1106301.png | ||
+ | $#A+1 = 113 n = 0 | ||
+ | $#C+1 = 113 : ~/encyclopedia/old_files/data/B110/B.1100630 Block | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An [[Ideal|ideal]] $ I $ | |
+ | of a ring $ A $ | ||
+ | is said to be indecomposable if, for any ideals $ X $ | ||
+ | and $ Y $ | ||
+ | of $ A $, | ||
+ | $ I = X \oplus Y $ | ||
+ | implies $ X = 0 $ | ||
+ | or $ Y = 0 $. | ||
+ | The ideal $ I $ | ||
+ | is called a direct summand of $ A $ | ||
+ | if $ A = I \oplus J $ | ||
+ | for some ideal $ J $ | ||
+ | of $ A $. | ||
+ | A block of $ A $ | ||
+ | is defined to be any ideal of $ A $ | ||
+ | which is an indecomposable direct summand of $ A $. | ||
+ | By a block idempotent of $ A $ | ||
+ | one understands any primitive [[Idempotent|idempotent]] of the centre of $ A $( | ||
+ | cf. also [[Centre of a ring|Centre of a ring]]). An ideal $ B $ | ||
+ | of $ A $ | ||
+ | is a block of $ A $ | ||
+ | if and only if $ B = Ae $ | ||
+ | for some (necessarily unique) block idempotent $ e $ | ||
+ | of $ A $. | ||
+ | Thus blocks and block idempotents determine each other. | ||
− | + | Any decomposition of $ A $ | |
+ | of the form $ A = B _ {1} \oplus \dots \oplus B _ {n} $, | ||
+ | where each $ B _ {i} $ | ||
+ | is a block of $ A $, | ||
+ | is called a block decomposition of $ A $. | ||
+ | In general, such a decomposition need not exist, but it does exist if $ A $ | ||
+ | is semi-perfect (cf. [[Perfect ring|Perfect ring]]). In the classical case where $ A $ | ||
+ | is semi-primitive Artinian (cf. [[Primitive ring|Primitive ring]]; [[Artinian ring|Artinian ring]]), each block of $ A $ | ||
+ | is a complete matrix ring over a suitable division ring, and the number of blocks of $ A $ | ||
+ | is equal to the number of non-isomorphic simple $ A $- | ||
+ | modules. | ||
− | + | The study of blocks is especially important in the context of group representation theory (see [[Representation of a group|Representation of a group]]; [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]]). Here, the role of $ A $ | |
+ | is played by the group algebra $ RG $, | ||
+ | where $ G $ | ||
+ | is a [[Finite group|finite group]] and the commutative ring $ R $ | ||
+ | is assumed to be a complete Noetherian semi-local ring (cf. also [[Commutative ring|Commutative ring]]; [[Noetherian ring|Noetherian ring]]; [[Local ring|Local ring]]) such that $ R/J ( R ) $ | ||
+ | has prime characteristic $ p $. | ||
+ | The most important special cases are: | ||
− | + | $ R $ | |
+ | is a complete discrete valuation ring of characteristic $ 0 $ | ||
+ | with $ R/J ( R ) $ | ||
+ | of prime characteristic $ p $; | ||
− | + | $ R $ | |
+ | is a field of prime characteristic $ p $. | ||
− | + | One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of $ G $ | |
+ | into blocks. The main idea is due to R. Brauer and can be described as follows. Let $ G $ | ||
+ | be a [[Finite group|finite group]] and let $ p $ | ||
+ | be a prime number. Assume that $ R $ | ||
+ | is a complete discrete [[Valuation|valuation]] ring of characteristic $ 0 $, | ||
+ | $ K $ | ||
+ | is the quotient field of $ R $ | ||
+ | and $ R/J ( R ) $ | ||
+ | is of characteristic $ p $. | ||
+ | Let $ { \mathop{\rm Irr} } ( G ) $ | ||
+ | be the set of all irreducible $ K $- | ||
+ | characters of $ G $( | ||
+ | cf. [[Character of a group|Character of a group]]) and write $ B = B ( e ) $ | ||
+ | to indicate that $ B $ | ||
+ | is a block of $ RG $ | ||
+ | whose corresponding block idempotent is $ e $, | ||
+ | i.e., $ B = RGe $. | ||
+ | The character $ \chi \in { \mathop{\rm Irr} } ( G ) $ | ||
+ | is said to belong to the block $ B = B ( e ) $ | ||
+ | of $ RG $ | ||
+ | if $ \chi ( e ) \neq 0 $( | ||
+ | here $ \chi $ | ||
+ | is extended by $ K $- | ||
+ | linearity to the mapping $ \chi : {KG } \rightarrow K $). | ||
+ | It turns out that if $ B _ {1} \dots B _ {n} $ | ||
+ | are all distinct blocks of $ RG $, | ||
+ | then $ { \mathop{\rm Irr} } ( G ) $ | ||
+ | is a disjoint union of the $ { \mathop{\rm Irr} } ( B _ {i} ) $, | ||
+ | $ 1 \leq i \leq n $, | ||
+ | where $ { \mathop{\rm Irr} } ( B _ {i} ) $ | ||
+ | denotes the set of irreducible $ K $- | ||
+ | characters of $ G $ | ||
+ | belonging to $ B _ {i} $. | ||
+ | In the classical case studied by Brauer, namely when $ K $ | ||
+ | is a splitting field for $ G $, | ||
+ | the irreducible $ K $- | ||
+ | characters of $ G $ | ||
+ | are identifiable with the irreducible $ \mathbf C $- | ||
+ | characters of $ G $. | ||
+ | |||
+ | Assume that, in the context of the previous paragraph, $ K $ | ||
+ | is a splitting field for $ G $. | ||
+ | Let $ B $ | ||
+ | be a block of $ RG $ | ||
+ | and let $ p ^ {a} $ | ||
+ | be the order of Sylow $ p $- | ||
+ | subgroups of $ G $( | ||
+ | cf. [[Sylow subgroup|Sylow subgroup]]). It turns out that there exists an integer $ d \geq 0 $, | ||
+ | called the defect of $ B $, | ||
+ | such that $ p ^ {a - d } $ | ||
+ | is the largest power of $ p $ | ||
+ | which divides $ \chi ( 1 ) $ | ||
+ | for all $ \chi \in { \mathop{\rm Irr} } ( B ) $. | ||
+ | The notion of the defect of $ B $ | ||
+ | can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that $ R $ | ||
+ | is a complete Noetherian semi-local ring such that $ R/J ( R ) $ | ||
+ | has prime characteristic $ p $( | ||
+ | see [[#References|[a5]]]; [[Noetherian ring|Noetherian ring]]). | ||
+ | |||
+ | For the classical case where $ K $ | ||
+ | is a splitting field for $ G $, | ||
+ | one has the following famous problem, frequently called the Brauer $ k ( B ) $- | ||
+ | conjecture. Let $ B $ | ||
+ | be a block of $ RG $ | ||
+ | and let $ k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $. | ||
+ | Is it true that $ k ( B ) \leq p ^ {d} $, | ||
+ | where $ d $ | ||
+ | is the defect of $ B $? | ||
+ | Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $ k ( B ) $- | ||
+ | conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $ k ( B ) $- | ||
+ | conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [[#References|[a5]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''1''' , North-Holland (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''2''' , North-Holland (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''4''' , North-Holland (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''5''' , North-Holland (1996)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''1''' , North-Holland (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''2''' , North-Holland (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''4''' , North-Holland (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''5''' , North-Holland (1996)</TD></TR></table> |
Latest revision as of 10:59, 29 May 2020
An ideal $ I $
of a ring $ A $
is said to be indecomposable if, for any ideals $ X $
and $ Y $
of $ A $,
$ I = X \oplus Y $
implies $ X = 0 $
or $ Y = 0 $.
The ideal $ I $
is called a direct summand of $ A $
if $ A = I \oplus J $
for some ideal $ J $
of $ A $.
A block of $ A $
is defined to be any ideal of $ A $
which is an indecomposable direct summand of $ A $.
By a block idempotent of $ A $
one understands any primitive idempotent of the centre of $ A $(
cf. also Centre of a ring). An ideal $ B $
of $ A $
is a block of $ A $
if and only if $ B = Ae $
for some (necessarily unique) block idempotent $ e $
of $ A $.
Thus blocks and block idempotents determine each other.
Any decomposition of $ A $ of the form $ A = B _ {1} \oplus \dots \oplus B _ {n} $, where each $ B _ {i} $ is a block of $ A $, is called a block decomposition of $ A $. In general, such a decomposition need not exist, but it does exist if $ A $ is semi-perfect (cf. Perfect ring). In the classical case where $ A $ is semi-primitive Artinian (cf. Primitive ring; Artinian ring), each block of $ A $ is a complete matrix ring over a suitable division ring, and the number of blocks of $ A $ is equal to the number of non-isomorphic simple $ A $- modules.
The study of blocks is especially important in the context of group representation theory (see Representation of a group; [a1], [a2], [a3], [a4], [a5]). Here, the role of $ A $ is played by the group algebra $ RG $, where $ G $ is a finite group and the commutative ring $ R $ is assumed to be a complete Noetherian semi-local ring (cf. also Commutative ring; Noetherian ring; Local ring) such that $ R/J ( R ) $ has prime characteristic $ p $. The most important special cases are:
$ R $ is a complete discrete valuation ring of characteristic $ 0 $ with $ R/J ( R ) $ of prime characteristic $ p $;
$ R $ is a field of prime characteristic $ p $.
One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of $ G $ into blocks. The main idea is due to R. Brauer and can be described as follows. Let $ G $ be a finite group and let $ p $ be a prime number. Assume that $ R $ is a complete discrete valuation ring of characteristic $ 0 $, $ K $ is the quotient field of $ R $ and $ R/J ( R ) $ is of characteristic $ p $. Let $ { \mathop{\rm Irr} } ( G ) $ be the set of all irreducible $ K $- characters of $ G $( cf. Character of a group) and write $ B = B ( e ) $ to indicate that $ B $ is a block of $ RG $ whose corresponding block idempotent is $ e $, i.e., $ B = RGe $. The character $ \chi \in { \mathop{\rm Irr} } ( G ) $ is said to belong to the block $ B = B ( e ) $ of $ RG $ if $ \chi ( e ) \neq 0 $( here $ \chi $ is extended by $ K $- linearity to the mapping $ \chi : {KG } \rightarrow K $). It turns out that if $ B _ {1} \dots B _ {n} $ are all distinct blocks of $ RG $, then $ { \mathop{\rm Irr} } ( G ) $ is a disjoint union of the $ { \mathop{\rm Irr} } ( B _ {i} ) $, $ 1 \leq i \leq n $, where $ { \mathop{\rm Irr} } ( B _ {i} ) $ denotes the set of irreducible $ K $- characters of $ G $ belonging to $ B _ {i} $. In the classical case studied by Brauer, namely when $ K $ is a splitting field for $ G $, the irreducible $ K $- characters of $ G $ are identifiable with the irreducible $ \mathbf C $- characters of $ G $.
Assume that, in the context of the previous paragraph, $ K $ is a splitting field for $ G $. Let $ B $ be a block of $ RG $ and let $ p ^ {a} $ be the order of Sylow $ p $- subgroups of $ G $( cf. Sylow subgroup). It turns out that there exists an integer $ d \geq 0 $, called the defect of $ B $, such that $ p ^ {a - d } $ is the largest power of $ p $ which divides $ \chi ( 1 ) $ for all $ \chi \in { \mathop{\rm Irr} } ( B ) $. The notion of the defect of $ B $ can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that $ R $ is a complete Noetherian semi-local ring such that $ R/J ( R ) $ has prime characteristic $ p $( see [a5]; Noetherian ring).
For the classical case where $ K $ is a splitting field for $ G $, one has the following famous problem, frequently called the Brauer $ k ( B ) $- conjecture. Let $ B $ be a block of $ RG $ and let $ k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $. Is it true that $ k ( B ) \leq p ^ {d} $, where $ d $ is the defect of $ B $? Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $ k ( B ) $- conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $ k ( B ) $- conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [a5]).
References
[a1] | G. Karpilovsky, "Group representations" , 1 , North-Holland (1992) |
[a2] | G. Karpilovsky, "Group representations" , 2 , North-Holland (1993) |
[a3] | G. Karpilovsky, "Group representations" , 3 , North-Holland (1994) |
[a4] | G. Karpilovsky, "Group representations" , 4 , North-Holland (1995) |
[a5] | G. Karpilovsky, "Group representations" , 5 , North-Holland (1996) |
Block. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Block&oldid=46085