Namespaces
Variants
Actions

Difference between revisions of "Elliptic integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (hyperlink)
(MSC 33E05)
Line 1: Line 1:
An integral of an [[Algebraic function|algebraic function]] of the first kind, that is, an integral of the form
+
{{MSC|33E05}}
 +
 
 +
An integral of an [[algebraic function]] of the first kind, that is, an integral of the form
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035490/e0354901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035490/e0354901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>

Revision as of 22:08, 28 November 2014

2020 Mathematics Subject Classification: Primary: 33E05 [MSN][ZBL]

An integral of an algebraic function of the first kind, that is, an integral of the form

(1)

where is a rational function of the variables and . These variables are connected by an equation

(2)

in which is a polynomial of degree 3 or 4 without multiple roots. Here it is usually understood that the integral (1) cannot be expressed in terms of only one elementary function. When such an expression is possible, then (1) is said to be a pseudo-elliptic integral.

The name elliptic integral stems from the fact that they appeared first in the rectification of the arc of an ellipse and other second-order curves in work by Jacob and Johann Bernoulli, G.C. Fagnano dei Toschi, and L. Euler, who at the end of the 17th century and the beginning of the 18th century laid the foundations of the theory of elliptic integrals and elliptic functions (cf. Elliptic function), which arise in the inversion of elliptic integrals (cf. Inversion of an elliptic integral).

To the equations (2) corresponds a two-sheeted compact Riemann surface of genus , homeomorphic to a torus, on which and , and hence also , regarded as functions of a point of , are single-valued. The integral (1) is given as the integral of the Abelian differential on , taken along some rectifiable path . The specification of the beginning and the end of this path does not determine completely the value of the elliptic integral (1), generally speaking; in other words, (1) is a many-valued function of and .

Any elliptic integral can be expressed as a sum of elementary functions and linear combinations of canonical elliptic integrals of the first, second and third kinds. The latter can be written, for example, in the following form:

where is the parameter of the elliptic integral of the third kind.

The differential corresponding to is finite everywhere on the Riemann surface , the differentials of the second kind and third kinds have a pole-type singularity with residue zero or a simple pole, respectively. Regarded as functions of the upper limit of integration with a fixed lower limit, these three elliptic integrals are many-valued on . If one cuts along two cycles of a homology basis, then on the resulting simply-connected domain the integrals and are single valued, while still has a logarithmic singularity that arises on going around the simple pole. On passing through a cut each integral changes by an integer multiple of the corresponding period or modulus of periodicity, while has in addition a third logarithmic period corresponding to a circuit around the singular point. Thus, the computation of an integral of type (1) reduces to that of an integral along the path on joining the points and , and the addition of the corresponding linear combination of periods.

By subjecting the variable to certain transformations one can bring the function and the basic elliptic integrals to normal forms. In Weierstrass normal form the relation

holds, and the integral

has the periods . The inversion of this elliptic integral gives the Weierstrass elliptic function with periods and invariants (see Weierstrass elliptic functions). The calculation of the periods from given invariants proceeds by means of the modular function . If in a normal integral of the second kind

one takes a normal integral of the first kind as integration variable, then for a suitable choice of the integration constant the equality

holds, where is the Weierstrass -function. Here the periods of the normal integral of the second kind are equal to , . A normal integral of the third kind in Weierstrass form has the form

where is the Weierstrass -function, , , . Here the transposition rule holds:

where is an integer. The periods of a normal integral of the third kind have the form

where are integers and is the logarithmic period.

In applications on often comes across the Legendre normal form. Here

where is called the modulus of the elliptic integral, is sometimes called the Legendre modulus, and is called the supplementary modulus. Most frequently the normal case occurs, when and is a real variable. An elliptic integral of the first kind in Legendre normal form has the form

it is also called an incomplete elliptic integral of the first kind; is called its amplitude. This is an infinite-valued function of . The inversion of a normal integral of the first kind leads to the Jacobi elliptic function (see Jacobi elliptic functions).

The Legendre normal form of a normal integral of the second kind is

it is also called an incomplete elliptic integral of the second kind.

The integrals

are called complete elliptic integrals of the first and second kind, respectively. The Legendre integrals of the first kind have periods and , those of the second kind — and .

The Legendre normal form of a normal integral of the third kind is

where is the parameter and, as a rule, . When or , it is called a circular integral, and when or — a hyperbolic integral.

A normal integral of the third kind according to Jacobi is defined somewhat differently:

where . The connection between Jacobi and Legendre integrals of the third kind can be expressed by the formula

a circular character corresponds to an imaginary and a hyperbolic one to a real .

Side-by-side with elliptic functions, elliptic integrals have numerous and important applications in various problems of analysis, geometry and physics; in particular, in mechanics, astronomy and geodesy. There are tables of elliptic integrals and extensive guidebooks on the theory of elliptic integrals and functions, and also compendia of formulas.

For references see also Elliptic function.

References

[1] V.M. Belyakov, R.I. Kravtsova, M.G. Rappoport, "Tables of elliptic integrals" , 1–2 , Moscow (1962–1963) (In Russian)
[2] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German) MR0015900 Zbl 0061.29906


Comments

References

[a1] H. Hancock, "Theory of elliptic functions" , Dover, reprint (1958) MR0100106 Zbl 0084.07302
[a2] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1972) MR0314236 Zbl 0543.33001
How to Cite This Entry:
Elliptic integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Elliptic_integral&oldid=35069
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article