Namespaces
Variants
Actions

Difference between revisions of "Cardioid"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m
Line 24: Line 24:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
 
 
 
====Comments====
 
 
 
====References====
 
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR></table>

Revision as of 10:55, 5 July 2014

A plane algebraic curve of order four which is described by a point $M$ of a circle of radius $r$ rolling on a circle with the same radius $r$; an epicycloid with modulus $m=1$. The equation of the cardioid in polar coordinates is:

$$\rho=2r(1-\cos\phi),$$

In Cartesian coordinates it is:

$$(x^2+y^2+2rx)^2=4r^2(x^2+y^2).$$

The arc length from the cusp is:

$$l=16r\sin^2\frac\phi4.$$

The radius of curvature is:

$$r_k=\frac{8r}{3}\sin\frac\phi2.$$

The area bounded by the curve equals $S=6\pi r^2$. The length of the curve is $16r$. The cardioid is a conchoid of the circle, a special case of a Pascal limaçon and a sinusoidal spiral.

Figure: c020390a

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[a1] J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)
How to Cite This Entry:
Cardioid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cardioid&oldid=32369
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article