Namespaces
Variants
Actions

Difference between revisions of "Balanced category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Balanced category)
 
m (→‎References: isbn link)
 
Line 4: Line 4:
  
 
====References====
 
====References====
* Roy L. Crole, "Categories for types", Cambridge University Press (1993) ISBN 0-521-45701-7 {{ZBL|0837.68077}}
+
* Roy L. Crole, "Categories for types", Cambridge University Press (1993) {{ISBN|0-521-45701-7}} {{ZBL|0837.68077}}
 
* P.T. Johnstone,"Topos theory",  Academic Press (1977) {{MR|0470019}} {{ZBL|0368.18001}}
 
* P.T. Johnstone,"Topos theory",  Academic Press (1977) {{MR|0470019}} {{ZBL|0368.18001}}

Latest revision as of 19:32, 15 November 2023

2020 Mathematics Subject Classification: Primary: 18A05 Secondary: 18A20 [MSN][ZBL]

A category in which any morphism that is both a monomorphism and an epimorphism is an isomorphism.

References

How to Cite This Entry:
Balanced category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Balanced_category&oldid=51475