Namespaces
Variants
Actions

Difference between revisions of "Riemann function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (latex details)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [[#References|[1]]]) for studying the problem of the representation of a function by a [[Trigonometric series|trigonometric series]]. Let a series
+
The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [[#References|[1]]]) for studying the problem of the representation of a function by a [[trigonometric series]]. Let a series
  
 
$$ \tag{* }
 
$$ \tag{* }
  
 
\frac{a _ {0} }{2}
 
\frac{a _ {0} }{2}
  + \sum _ { n= } 1 ^  \infty  ( a _ {n}  \cos  nx + b _ {n}  \sin  nx )
+
  + \sum _ { n= 1} ^  \infty  ( a _ {n}  \cos  nx + b _ {n}  \sin  nx )
 
$$
 
$$
  
Line 26: Line 26:
 
F( x)  =   
 
F( x)  =   
 
\frac{a _ {0} x  ^ {2} }{4}
 
\frac{a _ {0} x  ^ {2} }{4}
  - \sum _ { n= } 1 ^  \infty   
+
  - \sum _ { n= 1 }^  \infty   
 
\frac{1}{n  ^ {2} }
 
\frac{1}{n  ^ {2} }
 
  ( a _ {n}  \cos  nx + b _ {n}  \sin  nx ) + Cx + D,
 
  ( a _ {n}  \cos  nx + b _ {n}  \sin  nx ) + Cx + D,
Line 37: Line 37:
 
Riemann's first theorem: Let the series (*) converge at a point  $  x _ {0} $
 
Riemann's first theorem: Let the series (*) converge at a point  $  x _ {0} $
 
to a number  $  S $.  
 
to a number  $  S $.  
The Schwarzian derivative (cf. [[Riemann derivative|Riemann derivative]])  $  D _ {2} F( x _ {0} ) $
+
The Schwarzian derivative (cf. [[Riemann derivative]])  $  D _ {2} F( x _ {0} ) $
 
then equals  $  S $.  
 
then equals  $  S $.  
 
Riemann's second theorem: Let  $  a _ {n} , b _ {n} \rightarrow 0 $
 
Riemann's second theorem: Let  $  a _ {n} , b _ {n} \rightarrow 0 $
Line 93: Line 93:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B. Riemann,  "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint  (1957)  pp. 227–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  B. Riemann,  "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint  (1957)  pp. 227–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====

Latest revision as of 07:55, 6 January 2024


The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [1]) for studying the problem of the representation of a function by a trigonometric series. Let a series

$$ \tag{* } \frac{a _ {0} }{2} + \sum _ { n= 1} ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx ) $$

with bounded sequences $ \{ a _ {n} \} , \{ b _ {n} \} $ be given. The Riemann function for this series is the function $ F $ obtained by twice term-by-term integration of the series:

$$ F( x) = \frac{a _ {0} x ^ {2} }{4} - \sum _ { n= 1 }^ \infty \frac{1}{n ^ {2} } ( a _ {n} \cos nx + b _ {n} \sin nx ) + Cx + D, $$

$$ C, D = \textrm{ const } . $$

Riemann's first theorem: Let the series (*) converge at a point $ x _ {0} $ to a number $ S $. The Schwarzian derivative (cf. Riemann derivative) $ D _ {2} F( x _ {0} ) $ then equals $ S $. Riemann's second theorem: Let $ a _ {n} , b _ {n} \rightarrow 0 $ as $ n \rightarrow \infty $. Then at any point $ x $,

$$ \lim\limits _ {n \rightarrow \infty } \frac{F( x+ h) + F( x- h) - 2F( x) }{h} = 0; $$

moreover, the convergence is uniform on any interval, that is, $ F $ is a uniformly smooth function.

If the series (*) converges on $ [ 0, 2 \pi ] $ to $ f( x) $ and if $ f \in L[ 0, 2 \pi ] $, then $ D _ {2} F( x) = f( x) $ for each $ x \in [ 0, 2 \pi ] $ and

$$ F( x) = \int\limits _ { 0 } ^ { x } dt \int\limits _ { 0 } ^ { t } f( u) du + Cx + D. $$

Let $ a _ {n} , b _ {n} $ be real numbers tending to $ 0 $ as $ n \rightarrow \infty $, let

$$ \underline{S} ( x) = \ \lim\limits _ {\overline{ {n \rightarrow \infty }}\; } S _ {n} ( x) \ \textrm{ and } \ \overline{S}\; ( x) = \overline{\lim\limits}\; _ {n \rightarrow \infty } S _ {n} ( x) $$

be finite at a point $ x $, and let

$$ S( x) = \frac{1}{2} ( \underline{S} ( x) + \overline{S}\; ( x)),\ \ \delta ( x) = \frac{1}{2} ( \overline{S}\; ( x) - \underline{S} ( x)). $$

Then the upper and lower Schwarzian derivatives $ \overline{D}\; _ {2} F( x) $ and $ \underline{D} _ {2} F( x) $ belong to $ [ S - \mu \delta , S + \mu \delta ] $, where $ \mu $ is an absolute constant. (The du Bois-Reymond lemma.)

References

[1] B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , Gesammelte Math. Abhandlungen , Dover, reprint (1957) pp. 227–264
[2] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)

Comments

See also Riemann summation method.

For Riemann's function in the theory of differential equations see Riemann method.

How to Cite This Entry:
Riemann function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann_function&oldid=48546
This article was adapted from an original article by A.A. Konyushkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article