Difference between revisions of "Over-convergence"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (latex details) |
||
Line 16: | Line 16: | ||
$$ | $$ | ||
− | f ( z) = | + | f ( z) = \sum _ {n=1} ^ \infty a _ {n} z ^ {\lambda _ {n} } |
− | \sum _ { n= } | ||
− | a _ {n} z ^ {\lambda _ {n} } | ||
$$ | $$ | ||
Line 37: | Line 35: | ||
$$ | $$ | ||
S _ { n _ \nu } ( z) = \ | S _ { n _ \nu } ( z) = \ | ||
− | \ | + | \sum_{m=1} ^ { {n _ \nu } } |
a _ {m} z ^ {\lambda _ {m} } ,\ \ | a _ {m} z ^ {\lambda _ {m} } ,\ \ | ||
\nu = 1 , 2 \dots | \nu = 1 , 2 \dots | ||
Line 62: | Line 60: | ||
$$ | $$ | ||
f ( z) = \ | f ( z) = \ | ||
− | \ | + | \sum_{n=0} ^ \infty |
a _ {n} z ^ {n} | a _ {n} z ^ {n} | ||
$$ | $$ | ||
Line 74: | Line 72: | ||
$$ | $$ | ||
− | \ | + | \sum_{n=1} ^ \infty d _ {n} z ^ {\lambda _ {n} } ,\ \ |
\lambda _ {n _ {k} + 1 } - \lambda _ {n _ {k} } > \ | \lambda _ {n _ {k} + 1 } - \lambda _ {n _ {k} } > \ | ||
\theta \lambda _ {n _ {k} } ,\ \ | \theta \lambda _ {n _ {k} } ,\ \ | ||
Line 84: | Line 82: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian)</TD></TR> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> L. [L. Il'ev] Ilieff, "Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)</TD></TR> | |
− | + | </table> | |
− | |||
− |
Latest revision as of 12:39, 6 January 2024
Convergence of a certain subsequence of partial sums of a series in a domain that is larger than the domain of convergence of the series. The following theorems on over-convergence hold:
1) If for a power series
$$ f ( z) = \sum _ {n=1} ^ \infty a _ {n} z ^ {\lambda _ {n} } $$
with radius of convergence $ R $, $ 0 < R < \infty $, the exponents $ \lambda _ {n} $ are such that for an infinite set of values $ n _ \nu $ of $ n $:
$$ \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ \theta \lambda _ {n _ \nu } , $$
where $ \theta $ is a fixed positive number, then the sequence of partial sums of orders $ n _ \nu $,
$$ S _ { n _ \nu } ( z) = \ \sum_{m=1} ^ { {n _ \nu } } a _ {m} z ^ {\lambda _ {m} } ,\ \ \nu = 1 , 2 \dots $$
converges uniformly in a sufficiently small neighbourhood of each point $ z _ {0} $ of the circle $ | z | = R $ on which the sum of the series for $ f ( z) $ is regular.
2) If
$$ \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ \theta _ \nu \lambda _ {n _ \nu } ,\ \ \lim\limits _ {\nu \rightarrow \infty } \theta _ \nu = + \infty , $$
then the sequence $ \{ S _ {n _ \nu } ( z) \} $ converges uniformly in any closed bounded part of the domain of existence of $ f ( z) $.
The following theorem also holds (the converse of 1)): If a power series
$$ f ( z) = \ \sum_{n=0} ^ \infty a _ {n} z ^ {n} $$
with radius of convergence $ R $, $ 0 < R < \infty $, has a subsequence of partial sums that is uniformly convergent in some neighbourhood of $ z _ {0} $, $ | z _ {0} | \geq R $, then this power series can be represented as the sum of a series with radius of convergence greater than $ R $ and a lacunary power series:
$$ \sum_{n=1} ^ \infty d _ {n} z ^ {\lambda _ {n} } ,\ \ \lambda _ {n _ {k} + 1 } - \lambda _ {n _ {k} } > \ \theta \lambda _ {n _ {k} } ,\ \ k = 1 , 2 ,\dots ; \ \ \theta > 0. $$
The first theorem is true for many other series, in particular for Dirichlet series.
References
[1] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[3] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
[a1] | L. [L. Il'ev] Ilieff, "Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian) |
Over-convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Over-convergence&oldid=48090