Difference between revisions of "Minimal iteration method"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 16: | Line 16: | ||
In the case of a symmetric matrix $ A $, | In the case of a symmetric matrix $ A $, | ||
− | the orthogonal system of vectors $ p _ {0} \dots p _ {n-} | + | the orthogonal system of vectors $ p _ {0} \dots p _ {n-1} $ |
is constructed using the three-term recurrence formula | is constructed using the three-term recurrence formula | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | p _ {k+} | + | p _ {k+1} = A p _ {k} - \alpha _ {k} p _ {k} - \beta _ {k} p _ {k-1} ,\ \ |
− | A p _ {k} - \alpha _ {k} p _ {k} - \beta _ {k} p _ {k-} | ||
k = 1 \dots n - 2 , | k = 1 \dots n - 2 , | ||
$$ | $$ | ||
Line 40: | Line 39: | ||
\beta _ {k} = | \beta _ {k} = | ||
\frac{( p _ {k} , p _ {k} ) }{( | \frac{( p _ {k} , p _ {k} ) }{( | ||
− | p _ {k-} | + | p _ {k-1} , p _ {k-1} ) } |
,\ k = 1 \dots n - 2 . | ,\ k = 1 \dots n - 2 . | ||
$$ | $$ | ||
The solution of the system $ A x = b $ | The solution of the system $ A x = b $ | ||
− | is found by the formula $ x = \ | + | is found by the formula $ x = \sum_{k=0}^ {n-1} c _ {k} p _ {k} $, |
and the coefficients $ c _ {k} $ | and the coefficients $ c _ {k} $ | ||
are given as the solutions of the system | are given as the solutions of the system | ||
Line 52: | Line 51: | ||
\left . \begin{array}{c} | \left . \begin{array}{c} | ||
− | c _ {i-} | + | c _ {i-1} + \alpha _ {i} c _ {i} + \beta _ {i+1} c _ {i+1} |
= \ | = \ | ||
Line 66: | Line 65: | ||
\\ | \\ | ||
− | c _ {n-} | + | c _ {n-2} + \alpha _ {n-1} c _ {n-1} = \ |
− | \frac{( b , p _ {n-} | + | \frac{( b , p _ {n-1} ) }{( p _ {n-1} , p _ {n-1} ) } |
. | . | ||
Line 77: | Line 76: | ||
If the orthogonalization algorithm is degenerate, that is, if $ p _ {r} = 0 $ | If the orthogonalization algorithm is degenerate, that is, if $ p _ {r} = 0 $ | ||
for $ r < n $, | for $ r < n $, | ||
− | one has to choose a new initial vector $ p _ {0} ^ {( | + | one has to choose a new initial vector $ p _ {0} ^ {(1)} $, |
− | orthogonal to $ p _ {0} \dots p _ {r-} | + | orthogonal to $ p _ {0} \dots p _ {r-1} $ |
and one has to complete the system of basis vectors to a complete system. | and one has to complete the system of basis vectors to a complete system. | ||
Line 85: | Line 84: | ||
If $ A $ | If $ A $ | ||
is symmetric and positive definite, then constructing an $ A $- | is symmetric and positive definite, then constructing an $ A $- | ||
− | orthogonal system $ p _ {0} \dots p _ {n-} | + | orthogonal system $ p _ {0} \dots p _ {n-1} $ |
by formula (1) with | by formula (1) with | ||
Line 95: | Line 94: | ||
\beta _ {k} = \ | \beta _ {k} = \ | ||
− | \frac{( A {p _ {k} } , p _ {k} ) }{( A {p _ {k-} | + | \frac{( A {p _ {k} } , p _ {k} ) }{( A {p _ {k-1} } , p _ {k-1} ) } |
$$ | $$ | ||
Line 105: | Line 104: | ||
$$ | $$ | ||
− | x _ {k+} | + | x _ {k+1} = x _ {k} + c _ {k+1} p _ {k+1} ,\ \ |
k = 0 \dots n - 2 ,\ \ | k = 0 \dots n - 2 ,\ \ | ||
x _ {0} = c _ {0} p _ {0} , | x _ {0} = c _ {0} p _ {0} , | ||
$$ | $$ | ||
− | where $ x = x _ {n-} | + | where $ x = x _ {n-1} $. |
− | This modification of the method does not require a repeated use of all the vectors $ p _ {0} \dots p _ {k-} | + | This modification of the method does not require a repeated use of all the vectors $ p _ {0} \dots p _ {k-1} $. |
A minimal iteration method is used also for the solution of the complete eigen value problem and for finding the inverse matrix. | A minimal iteration method is used also for the solution of the complete eigen value problem and for finding the inverse matrix. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators" ''Res. Nat. Bur. Stand.'' , '''45''' : 4 (1950) pp. 255–288</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.K. Faddeev, V.N. Faddeeva, "Computational methods of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators" ''Res. Nat. Bur. Stand.'' , '''45''' : 4 (1950) pp. 255–288</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.K. Faddeev, V.N. Faddeeva, "Computational methods of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> |
Latest revision as of 19:56, 15 January 2024
A method for solving linear algebraic equations $ A x = b $,
in which the solution $ x $
is represented as a linear combination of basis vectors which are orthogonal in some metric connected with the matrix of the system.
In the case of a symmetric matrix $ A $, the orthogonal system of vectors $ p _ {0} \dots p _ {n-1} $ is constructed using the three-term recurrence formula
$$ \tag{1 } p _ {k+1} = A p _ {k} - \alpha _ {k} p _ {k} - \beta _ {k} p _ {k-1} ,\ \ k = 1 \dots n - 2 , $$
$ p _ {1} = A p _ {0} - \alpha _ {0} p _ {0} $, $ p _ {0} $ an arbitrary vector, where
$$ \alpha _ {k} = \ \frac{( A p _ {k} , p _ {k} ) }{( p _ {k} , p _ {k} ) } ,\ \ k = 0 \dots n - 2 , $$
$$ \beta _ {k} = \frac{( p _ {k} , p _ {k} ) }{( p _ {k-1} , p _ {k-1} ) } ,\ k = 1 \dots n - 2 . $$
The solution of the system $ A x = b $ is found by the formula $ x = \sum_{k=0}^ {n-1} c _ {k} p _ {k} $, and the coefficients $ c _ {k} $ are given as the solutions of the system
$$ \tag{2 } \left . \begin{array}{c} c _ {i-1} + \alpha _ {i} c _ {i} + \beta _ {i+1} c _ {i+1} = \ \frac{( b , p _ {i} ) }{( p _ {i} , p _ {i} ) } ,\ \ i = 1 \dots n - 2 , \\ \alpha _ {0} c _ {0} + \beta _ {1} c _ {1} = \ \frac{( b , p _ {0} ) }{( p _ {0} , p _ {0} ) } , \\ c _ {n-2} + \alpha _ {n-1} c _ {n-1} = \ \frac{( b , p _ {n-1} ) }{( p _ {n-1} , p _ {n-1} ) } . \end{array} \right \} $$
If the orthogonalization algorithm is degenerate, that is, if $ p _ {r} = 0 $ for $ r < n $, one has to choose a new initial vector $ p _ {0} ^ {(1)} $, orthogonal to $ p _ {0} \dots p _ {r-1} $ and one has to complete the system of basis vectors to a complete system.
In the case of a non-symmetric matrix a bi-orthogonal algorithm is used.
If $ A $ is symmetric and positive definite, then constructing an $ A $- orthogonal system $ p _ {0} \dots p _ {n-1} $ by formula (1) with
$$ \alpha _ {k} = \ \frac{( A {p _ {k} } , A {p _ {k} } ) }{( A {p _ {k} } , p _ {k} ) } ,\ \ \beta _ {k} = \ \frac{( A {p _ {k} } , p _ {k} ) }{( A {p _ {k-1} } , p _ {k-1} ) } $$
enables one to avoid solving the auxiliary system (2) and gives an explicit expression for the coefficients $ c _ {k} $: $ c _ {k} = ( b , p _ {k} ) / ( A p _ {k} , p _ {k} ) $. Here, to the method of $ A $- minimal iteration one can add the iteration
$$ x _ {k+1} = x _ {k} + c _ {k+1} p _ {k+1} ,\ \ k = 0 \dots n - 2 ,\ \ x _ {0} = c _ {0} p _ {0} , $$
where $ x = x _ {n-1} $. This modification of the method does not require a repeated use of all the vectors $ p _ {0} \dots p _ {k-1} $. A minimal iteration method is used also for the solution of the complete eigen value problem and for finding the inverse matrix.
References
[1] | C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators" Res. Nat. Bur. Stand. , 45 : 4 (1950) pp. 255–288 |
[2] | D.K. Faddeev, V.N. Faddeeva, "Computational methods of linear algebra" , Freeman (1963) (Translated from Russian) |
Minimal iteration method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_iteration_method&oldid=47841