Namespaces
Variants
Actions

Difference between revisions of "Mathieu functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 58: Line 58:
 
$$  
 
$$  
 
+  
 
+  
\sum _ { n= } 1 ^  \infty  \left [ 2  ^ {n+} 1
+
\sum _{n=1} ^  \infty  \left [ 2  ^ {n+1}
 
\frac{q  ^ {n} }{( n!)
 
\frac{q  ^ {n} }{( n!)
 
  ^ {2} }
 
  ^ {2} }
 
  -  
 
  -  
\frac{n( 3n+ 4) 2  ^ {n+} 3 q  ^ {n+} 2 }{(( n+ 1)!)
+
\frac{n( 3n+ 4) 2  ^ {n+3} q  ^ {n+2} }{(( n+ 1)!)
 
  ^ {2} }
 
  ^ {2} }
  + O( q  ^ {n+} 4 ) \right ]  \cos  2nz.
+
  + O( q  ^ {n+4} ) \right ]  \cos  2nz.
 
$$
 
$$
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill  (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli  (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.J.O. Strett,  "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer  (1932)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.W. Mac-Lachlan,  "Theory and application of Mathieu functions" , Clarendon Press  (1947)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill  (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli  (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.J.O. Strett,  "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer  (1932)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.W. Mac-Lachlan,  "Theory and application of Mathieu functions" , Clarendon Press  (1947)</TD></TR>
 +
</table>

Latest revision as of 16:31, 6 January 2024


The $ 2 \pi $- periodic solutions of the Mathieu equation

$$ \frac{d ^ {2} u }{dz ^ {2} } + ( a + 16q \cos 2z) u = 0,\ \ z \in \mathbf R , $$

which exist only when the point $ ( a, q) $ in the parameter plane lies on the boundary of the stability zones. A Mathieu function is even or odd, and is unique up to a factor; the second linearly-independent solution grows linearly in $ z $ for $ | z | \rightarrow \infty $, provided $ q \neq 0 $. The even Mathieu functions are the eigen functions of the integral equation

$$ G( z) = \lambda \int\limits _ {- \pi } ^ \pi e ^ {k \cos z \cos t } G( t) dt,\ \ k = \sqrt 32q . $$

An analogous equation is satisfied by the odd Mathieu functions. The notation for Mathieu functions is:

$$ ce _ {0} ( z, q), ce _ {1} ( z, q) , . . . ; \ se _ {1} ( z, q) , se _ {2} ( z, q) , . . . . $$

For $ q \rightarrow 0 $ these functions reduce to the trigonometric system

$$ 1 , \cos z , . . . ; \ \ \sin z, \sin 2z \dots $$

and they possess the same orthogonality properties on the interval $ (- \pi , \pi ) $. The Mathieu functions admit Fourier-series expansions which converge for small $ | q | \leq r _ {n} $; the coefficients of these series are convergent power series in $ q $, for example,

$$ ce _ {0} ( z, q) = \ 1 + $$

$$ + \sum _{n=1} ^ \infty \left [ 2 ^ {n+1} \frac{q ^ {n} }{( n!) ^ {2} } - \frac{n( 3n+ 4) 2 ^ {n+3} q ^ {n+2} }{(( n+ 1)!) ^ {2} } + O( q ^ {n+4} ) \right ] \cos 2nz. $$

References

[1] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2
[2] H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 3. Automorphic functions , McGraw-Hill (1955)
[3] G. Sansone, "Equazioni differenziali nel campo reale" , 1 , Zanichelli (1948)
[4] M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932)
[5] N.W. Mac-Lachlan, "Theory and application of Mathieu functions" , Clarendon Press (1947)
How to Cite This Entry:
Mathieu functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mathieu_functions&oldid=47791
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article