Difference between revisions of "Grothendieck space"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(fix tex) |
||
Line 39: | Line 39: | ||
is weakly compact. | is weakly compact. | ||
− | 4) For all weakly compactly generated Banach spaces $ Y $( | + | 4) For all weakly compactly generated Banach spaces $ Y $ |
− | i.e., $ Y $ | + | (i.e., $ Y $ |
− | is the closed linear span of a relatively weakly compact set), every bounded linear operator from $ X $ | + | is the [[Linear closure|closed linear span]] of a relatively weakly compact set), every bounded linear operator from $ X $ |
to $ Y $ | to $ Y $ | ||
is weakly compact. | is weakly compact. | ||
Line 86: | Line 86: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Ando, "Convergent sequences of finitely additive measures" ''Pacific J. Math.'' , '''11''' (1961) pp. 395–404</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Bourgain, " | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Ando, "Convergent sequences of finitely additive measures" ''Pacific J. Math.'' , '''11''' (1961) pp. 395–404</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Bourgain, "$H^\infty$ is a Grothendieck space" ''Studia Math.'' , '''75''' (1983) pp. 193–216</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> Th. Coulhon, "Suites d'operateurs sur un espace $C(K)$ de Grothendieck" ''C.R. Acad. Sci. Paris'' , '''298''' (1984) pp. 13–15</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Diestel, "Grothendieck spaces and vector measures" , ''Vector and Operator Valued Measures and Applications'' , Acad. Press (1973) pp. 97–108</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Diestel, J.J. Uhl, Jr., "Vector measures" , ''Math. Surveys'' , '''15''' , Amer. Math. Soc. (1977)</TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Grothendieck, "Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$" ''Canadian J. Math.'' , '''5''' (1953) pp. 129–173</TD></TR> | ||
+ | <TR><TD valign="top">[a7]</TD> <TD valign="top"> H.P. Lotz, "Uniform convergence of operators on $L^\infty$ and similar spaces" ''Math. Z.'' , '''190''' (1985) pp. 207–220</TD></TR> | ||
+ | <TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Pfitzner, "Weak compactness in the dual of a $C^*$-algebra is determined commutatively" ''Math. Ann.'' , '''298''' (1994) pp. 349–371</TD></TR> | ||
+ | <TR><TD valign="top">[a9]</TD> <TD valign="top"> F. Rábiger, "Beiträge zur Strukturtheorie der Grothendieck-Räume" ''Sitzungsber. Heidelberger Akad. Wissenschaft. Math.-Naturwiss. Kl. Abh.'' , '''4''' (1985)</TD></TR> | ||
+ | <TR><TD valign="top">[a10]</TD> <TD valign="top"> G. L. Seever, "Measures on $F$-spaces" ''Trans. Amer. Math. Soc.'' , '''133''' (1968) pp. 267–280</TD></TR> | ||
+ | <TR><TD valign="top">[a11]</TD> <TD valign="top"> S.-Y. Shaw, "Ergodic theorems for semigroups of operators on a Grothendieck space" ''Proc. Japan Acad.'' , '''59 (A)''' (1983) pp. 132–135</TD></TR></table> |
Latest revision as of 20:01, 27 February 2021
A Banach space $ X $
with the property that for all separable Banach spaces $ Y $(
cf. Separable space), every bounded linear operator $ T $
from $ X $
to $ Y $
is weakly compact (i.e., $ T $
sends bounded subsets of $ X $
into weakly compact subsets of $ Y $).
The above property is equivalent to each of the following assertions (see [a4], [a5], [a9]).
1) Every weak- $ * $ convergent sequence in the dual space $ X ^ {*} $ of $ X $ is weakly convergent.
2) Every bounded linear operator $ T $ from $ X $ to $ c _ {0} $ is weakly compact.
3) For all Banach spaces $ Y $ such that $ Y ^ {*} $ has a weak- $ * $ sequentially compact unit ball, every bounded linear operator from $ X $ to $ Y $ is weakly compact.
4) For all weakly compactly generated Banach spaces $ Y $ (i.e., $ Y $ is the closed linear span of a relatively weakly compact set), every bounded linear operator from $ X $ to $ Y $ is weakly compact.
5) For an arbitrary Banach space $ Y $, the limit of any weakly convergent sequence of weakly compact operators from $ X $ to $ Y $ is also a weakly compact operator.
6) For any Banach space $ Y $, the limit of any strongly convergent sequence of weakly compact operators from $ X $ to $ Y $ is also a weakly compact operator.
Hence, besides the definition given at the beginning, either 1) or 2) can also be used as the definition of a Grothendieck space. Quotient spaces and complemented subspaces of a Grothendieck space are also Grothendieck spaces.
Reflexive Banach spaces are obvious examples of Grothendieck spaces (cf. Reflexive space). Every separable quotient space of a Grothendieck space is necessarily reflexive. The first non-trivial example of a Grothendieck space is the space $ C ( \Omega ) $ of continuous functions on a compact Stonean space $ \Omega $( i.e., a compact Hausdorff space in which each open set has an open closure) [a6].
Other examples of Grothendieck spaces are: $ C ( \Omega ) $, where $ \Omega $ is a compact $ \sigma $- Stonean space (each open $ F _ \sigma $- set has an open closure) or a compact $ F $- space (any two disjoint open $ F _ \sigma $- sets have disjoint closures) (see [a1], [a10]); $ L ^ \infty ( \mu ) $, where $ \mu $ is a positive measure; $ B ( S, \Sigma ) $, where $ \Sigma $ is a $ \sigma $- algebra of subsets of $ S $; injective Banach spaces; the Hardy space $ H ^ \infty ( D ) $ of all bounded analytic functions on the open unit disc $ D $[a2]; and von Neumann algebras [a8].
A uniformly bounded $ C _ {0} $- semi-group of operators (cf. Semi-group of operators) on a Grothendieck space is strongly ergodic if and only if the weak- $ * $ closure and the strong closure of the range of the dual operator of the generator $ A $ coincide [a11]. If $ C ( K ) $ is a Grothendieck space, then every sequence $ \{ T _ {n} \} $ of contractions on $ C ( K ) $ which converges to the identity in the strong operator topology actually converges in the uniform operator topology (see [a3], [a7]). In particular, this implies equivalence of strong continuity and uniform continuity for contraction $ C _ {0} $- semi-groups on $ C ( K ) $.
References
[a1] | T. Ando, "Convergent sequences of finitely additive measures" Pacific J. Math. , 11 (1961) pp. 395–404 |
[a2] | J. Bourgain, "$H^\infty$ is a Grothendieck space" Studia Math. , 75 (1983) pp. 193–216 |
[a3] | Th. Coulhon, "Suites d'operateurs sur un espace $C(K)$ de Grothendieck" C.R. Acad. Sci. Paris , 298 (1984) pp. 13–15 |
[a4] | J. Diestel, "Grothendieck spaces and vector measures" , Vector and Operator Valued Measures and Applications , Acad. Press (1973) pp. 97–108 |
[a5] | J. Diestel, J.J. Uhl, Jr., "Vector measures" , Math. Surveys , 15 , Amer. Math. Soc. (1977) |
[a6] | A. Grothendieck, "Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$" Canadian J. Math. , 5 (1953) pp. 129–173 |
[a7] | H.P. Lotz, "Uniform convergence of operators on $L^\infty$ and similar spaces" Math. Z. , 190 (1985) pp. 207–220 |
[a8] | H. Pfitzner, "Weak compactness in the dual of a $C^*$-algebra is determined commutatively" Math. Ann. , 298 (1994) pp. 349–371 |
[a9] | F. Rábiger, "Beiträge zur Strukturtheorie der Grothendieck-Räume" Sitzungsber. Heidelberger Akad. Wissenschaft. Math.-Naturwiss. Kl. Abh. , 4 (1985) |
[a10] | G. L. Seever, "Measures on $F$-spaces" Trans. Amer. Math. Soc. , 133 (1968) pp. 267–280 |
[a11] | S.-Y. Shaw, "Ergodic theorems for semigroups of operators on a Grothendieck space" Proc. Japan Acad. , 59 (A) (1983) pp. 132–135 |
Grothendieck space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grothendieck_space&oldid=47140