|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102001.png" /> be a compact [[Hausdorff space|Hausdorff space]] (cf. also [[Compact space|Compact space]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102002.png" /> be the [[Banach algebra|Banach algebra]] of all complex-valued continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102003.png" /> with the supremum norm and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102004.png" /> be a linear subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102005.png" /> containing the constant functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102006.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102007.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102008.png" /> be defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c1102009.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020010.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020011.png" /> denote the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020012.png" />.
| + | <!-- |
| + | c1102001.png |
| + | $#A+1 = 119 n = 0 |
| + | $#C+1 = 119 : ~/encyclopedia/old_files/data/C110/C.1100200 Choquet boundary |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The Choquet boundary for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020013.png" /> is defined as the set
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020014.png" /></td> </tr></table>
| + | Let $ X $ |
| + | be a compact [[Hausdorff space|Hausdorff space]] (cf. also [[Compact space|Compact space]]), let $ C ( X ) $ |
| + | be the [[Banach algebra|Banach algebra]] of all complex-valued continuous functions on $ X $ |
| + | with the supremum norm and let $ A $ |
| + | be a linear subspace of $ C ( X ) $ |
| + | containing the constant functions on $ X $. |
| + | For $ t \in X $, |
| + | let $ \tau _ {t} \in A ^ {*} $ |
| + | be defined by $ \tau _ {t} ( f ) = f ( t ) $ |
| + | for all $ f \in A $ |
| + | and let $ K ( A ) $ |
| + | denote the set $ \{ {x ^ {*} \in A ^ {*} } : {\| {x ^ {*} } \| = x ^ {*} ( 1 ) = 1 } \} $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020015.png" /> denotes the set of extreme points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020016.png" />.
| + | The Choquet boundary for $ A $ |
| + | is defined as the set |
| | | |
− | Other relevant concepts involved in the study of the Choquet boundary are the boundary and the [[Shilov boundary]]. A boundary for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020017.png" /> is a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020019.png" /> such that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020020.png" />, there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020021.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020022.png" /> (cf. also [[Boundary (in the theory of uniform algebras)|Boundary (in the theory of uniform algebras)]]). If there is a smallest closed boundary for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020023.png" />, then it is called the Shilov boundary for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020024.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020025.png" />.
| + | $$ |
| + | { \mathop{\rm Ch} } ( A ) = \left \{ {t \in X } : {\tau _ {t} \in { \mathop{\rm ext} } ( K ( A ) ) } \right \} , |
| + | $$ |
| | | |
− | The motivation for these concepts comes from the classical theory of analytic functions (cf. also [[Analytic function|Analytic function]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020026.png" /> denotes the closed unit disc and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020027.png" /> is the linear subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020028.png" /> consisting of all complex-valued functions that are continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020029.png" /> and analytic inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020030.png" />, then, by the [[Maximum-modulus principle|maximum-modulus principle]], for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020031.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020032.png" /> (the unit circle) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020033.png" />. In fact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020034.png" /> is the smallest closed set having this property. A natural question to ask is: Given an arbitrary linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020036.png" />, does there exist a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020037.png" /> having properties similar to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020038.png" />? Investigations in this direction have led to the introduction of the above concepts.
| + | where $ { \mathop{\rm ext} } ( K ( A ) ) $ |
| + | denotes the set of extreme points of $ K ( A ) $. |
| | | |
− | It is clear from the above discussion that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020039.png" />. Also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020041.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020043.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020044.png" /> is the uniform closure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020045.png" /> of the algebra of all polynomials in two complex variables (cf. also [[Uniform space|Uniform space]]).
| + | Other relevant concepts involved in the study of the Choquet boundary are the boundary and the [[Shilov boundary]]. A boundary for $ A $ |
| + | is a subset $ E $ |
| + | of $ X $ |
| + | such that for each $ f \in A $, |
| + | there exists a $ t \in E $ |
| + | such that $ | {f ( t ) } | = \| f \| _ \infty $( |
| + | cf. also [[Boundary (in the theory of uniform algebras)|Boundary (in the theory of uniform algebras)]]). If there is a smallest closed boundary for $ A $, |
| + | then it is called the Shilov boundary for $ A $; |
| + | it is denoted by $ \delta A $. |
| | | |
− | In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020046.png" /> is a boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020047.png" /> and hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020048.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020049.png" /> separates the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020050.png" /> (cf. [[Uniform algebra|Uniform algebra]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020051.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020052.png" />. Also, in this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020053.png" /> if and only if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020054.png" /> (the unit mass concentrated at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020055.png" />) is the unique representing measure for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020056.png" />. This equivalent description is used as a definition of Choquet boundary in [[#References|[a1]]].
| + | The motivation for these concepts comes from the classical theory of analytic functions (cf. also [[Analytic function|Analytic function]]). If $ D $ |
| + | denotes the closed unit disc and $ A ( D ) $ |
| + | is the linear subspace of $ C ( D ) $ |
| + | consisting of all complex-valued functions that are continuous on $ D $ |
| + | and analytic inside $ D $, |
| + | then, by the [[Maximum-modulus principle|maximum-modulus principle]], for each $ f \in A ( D ) $ |
| + | there exists a $ t \in \Gamma $( |
| + | the unit circle) such that $ | {f ( t ) } | = \| f \| _ \infty $. |
| + | In fact, $ \Gamma $ |
| + | is the smallest closed set having this property. A natural question to ask is: Given an arbitrary linear subspace $ A $ |
| + | of $ C ( X ) $, |
| + | does there exist a subset of $ X $ |
| + | having properties similar to $ \Gamma $? |
| + | Investigations in this direction have led to the introduction of the above concepts. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020057.png" /> is a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020058.png" /> containing the constants and separating the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020059.png" />, then the Bishop boundary for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020060.png" /> can be defined as the set of all peak points for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020061.png" />, that is, the set
| + | It is clear from the above discussion that $ { \mathop{\rm Ch} } ( A ( D ) ) = \delta ( A ( D ) ) = \Gamma $. |
| + | Also, $ { \mathop{\rm Ch} } ( C ( X ) ) = X $ |
| + | and $ { \mathop{\rm Ch} } ( P ( D _ {2} ) ) = \delta ( P ( D _ {2} ) ) = \Gamma _ {2} $, |
| + | where $ D _ {2} = D \times D $, |
| + | $ \Gamma _ {2} = \Gamma \times \Gamma $, |
| + | and $ P ( D _ {2} ) $ |
| + | is the uniform closure on $ D _ {2} $ |
| + | of the algebra of all polynomials in two complex variables (cf. also [[Uniform space|Uniform space]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020062.png" /></td> </tr></table>
| + | In general, $ { \mathop{\rm Ch} } ( A ) $ |
| + | is a boundary of $ A $ |
| + | and hence $ { \mathop{\rm Ch} } ( A ) \neq \emptyset $. |
| + | If, in addition, $ A $ |
| + | separates the points of $ X $( |
| + | cf. [[Uniform algebra|Uniform algebra]]), then $ { \mathop{\rm Ch} } ( A ) $ |
| + | is dense in $ \delta A $. |
| + | Also, in this case, $ t \in { \mathop{\rm Ch} } ( A ) $ |
| + | if and only if the $ \varepsilon _ {t} $( |
| + | the unit mass concentrated at $ t $) |
| + | is the unique representing measure for $ \tau _ {t} $. |
| + | This equivalent description is used as a definition of Choquet boundary in [[#References|[a1]]]. |
| | | |
− | For any such algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020064.png" /> and if, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020065.png" /> is metrizable (cf. [[Metrizable space|Metrizable space]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020066.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020068.png" />-set. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020069.png" /> is not metrizable, then the following example [[#References|[a5]]] shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020070.png" /> need not even be a [[Borel set|Borel set]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020071.png" /> be an uncountable index set and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020072.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020074.png" />. Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020075.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020076.png" />, which is not a Borel set since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020077.png" /> is uncountable.
| + | If $ A $ |
| + | is a subalgebra of $ C ( X ) $ |
| + | containing the constants and separating the points of $ X $, |
| + | then the Bishop boundary for $ A $ |
| + | can be defined as the set of all peak points for $ A $, |
| + | that is, the set |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020078.png" /> is a uniform algebra (i.e. a closed subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020079.png" /> containing the constants and separating the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020080.png" />), then the following are equivalent
| + | $$ |
| + | \rho A = \left \{ {t \in X } : {\exists f \in A: \left | {f ( t ) } \right | < \left | {f ( s ) } \right | , \forall s \in X \setminus \{ t \} } \right \} . |
| + | $$ |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020081.png" />;
| + | For any such algebra $ A $, |
| + | $ \rho A \subseteq { \mathop{\rm Ch} } ( A ) \subseteq \delta A $ |
| + | and if, in addition, $ X $ |
| + | is metrizable (cf. [[Metrizable space|Metrizable space]]), then $ { \mathop{\rm Ch} } ( A ) $ |
| + | is a $ G _ \delta $- |
| + | set. However, if $ X $ |
| + | is not metrizable, then the following example [[#References|[a5]]] shows that $ { \mathop{\rm Ch} } ( A ) $ |
| + | need not even be a [[Borel set|Borel set]]. Let $ \Lambda $ |
| + | be an uncountable index set and for each $ \lambda \in \Lambda $, |
| + | let $ A _ \lambda = \{ {f \in A ( D ) } : {f ( 0 ) = f ( 1 ) } \} $ |
| + | and $ B _ \lambda = \Gamma - \{ 1 \} $. |
| + | Then for $ U = \otimes \{ {A _ \lambda } : {\lambda \in \Lambda } \} $ |
| + | one has $ { \mathop{\rm Ch} } ( U ) = \prod \{ {B _ \lambda } : {\lambda \in \Lambda } \} $, |
| + | which is not a Borel set since $ \Lambda $ |
| + | is uncountable. |
| | | |
− | ii) for each open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020082.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020083.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020084.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020086.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020087.png" />;
| + | If $ A $ |
| + | is a uniform algebra (i.e. a closed subalgebra of $ C ( X ) $ |
| + | containing the constants and separating the points of $ X $), |
| + | then the following are equivalent |
| | | |
− | iii) there exists a family of peak sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020088.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020089.png" /> such that
| + | i) $ t \in { \mathop{\rm Ch} } ( A ) $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020090.png" /></td> </tr></table>
| + | ii) for each open neighbourhood $ U $ |
| + | of $ t $ |
| + | there is an $ f \in A $ |
| + | such that $ \| f \| _ \infty = 1 $ |
| + | and $ | {f ( s ) } | < 1 $ |
| + | for all $ s \in X \setminus U $; |
| | | |
− | where, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020091.png" />,
| + | iii) there exists a family of peak sets $ \{ E _ {f _ \alpha } \} $ |
| + | for $ A $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020092.png" /></td> </tr></table>
| + | $$ |
| + | \cap _ \alpha E _ {f _ \alpha } = \{ t \} , |
| + | $$ |
| | | |
− | iv) given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020093.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020094.png" /> is an open neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020095.png" />, then there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020096.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020098.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020099.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200100.png" />.
| + | where, for $ f _ \alpha \in A $, |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200101.png" /> is a uniform algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200102.png" /> is metrizable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200103.png" />.
| + | $$ |
| + | E _ {f _ \alpha } = \left \{ {t \in X } : {\left | {f _ \alpha ( t ) } \right | = \left \| {f _ \alpha } \right \| _ \infty } \right \} ; |
| + | $$ |
| | | |
− | The concept of Choquet boundary can be extended to any arbitrary commutative Banach algebra via Gel'fand theory. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200104.png" /> is any commutative Banach algebra (cf. [[Commutative Banach algebra|Commutative Banach algebra]]) with identity, then its [[Maximal ideal|maximal ideal]] space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200105.png" /> is compact Hausdorff and the [[Gel'fand representation|Gel'fand representation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200106.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200107.png" /> is a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200108.png" /> separating the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200109.png" /> and containing the constants. Hence, one can define the Choquet boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200110.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200111.png" />. | + | iv) given $ 0 < \alpha < \beta < 1 $, |
| + | if $ U $ |
| + | is an open neighbourhood of $ t $, |
| + | then there is an $ f \in A $ |
| + | such that $ \| f \| _ \infty < 1 $, |
| + | $ | {f ( t ) } | > \beta $ |
| + | and $ | {f ( s ) } | < \alpha $ |
| + | for $ s \in X \setminus U $. |
| + | |
| + | If $ A $ |
| + | is a uniform algebra and $ X $ |
| + | is metrizable, then $ { \mathop{\rm Ch} } ( A ) = \rho A $. |
| + | |
| + | The concept of Choquet boundary can be extended to any arbitrary commutative Banach algebra via Gel'fand theory. If $ A $ |
| + | is any commutative Banach algebra (cf. [[Commutative Banach algebra|Commutative Banach algebra]]) with identity, then its [[Maximal ideal|maximal ideal]] space $ riangle ( A ) $ |
| + | is compact Hausdorff and the [[Gel'fand representation|Gel'fand representation]] $ {\widehat{A} } $ |
| + | of $ A $ |
| + | is a subalgebra of $ C ( riangle ( A ) ) $ |
| + | separating the points of $ X $ |
| + | and containing the constants. Hence, one can define the Choquet boundary of $ A $ |
| + | as $ { \mathop{\rm Ch} } ( {\widehat{A} } ) $. |
| | | |
| The concept of Choquet boundary has been extended to real function algebras in [[#References|[a2]]]. | | The concept of Choquet boundary has been extended to real function algebras in [[#References|[a2]]]. |
| | | |
− | The notion of Choquet boundary is useful in characterizing onto linear isometries of certain function spaces. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200112.png" /> is a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200113.png" /> separating points and containing the constants and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200114.png" /> is a linear [[Isometric mapping|isometric mapping]] (linear isometry) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200115.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200116.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200117.png" />, then one can show that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200118.png" /> is an algebra isometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200119.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c110200120.png" />, [[#References|[a3]]], p. 243. | + | The notion of Choquet boundary is useful in characterizing onto linear isometries of certain function spaces. In particular, if $ A $ |
| + | is a subalgebra of $ C ( X ) $ |
| + | separating points and containing the constants and if $ T : A \rightarrow A $ |
| + | is a linear [[Isometric mapping|isometric mapping]] (linear isometry) of $ A $ |
| + | onto $ A $ |
| + | such that $ T ( 1 ) = 1 $, |
| + | then one can show that $ T $ |
| + | is an algebra isometry of $ A $ |
| + | onto $ A $, |
| + | [[#References|[a3]]], p. 243. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Browder, "Introduction to function algebras" , W.A. Benjamin (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S.H. Kulkarni, B.V. Limaye, "Real function algebras" , M. Dekker (1992)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Larsen, "Banach algebras: an introduction" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.R. Phelps, "Lectures on Choquet's theorem" , v. Nostrand (1966)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> E.L. Stout, "The theory of uniform algebras" , Bogden and Quigley (1971)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Browder, "Introduction to function algebras" , W.A. Benjamin (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S.H. Kulkarni, B.V. Limaye, "Real function algebras" , M. Dekker (1992)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Larsen, "Banach algebras: an introduction" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.R. Phelps, "Lectures on Choquet's theorem" , v. Nostrand (1966)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> E.L. Stout, "The theory of uniform algebras" , Bogden and Quigley (1971)</TD></TR></table> |
Let $ X $
be a compact Hausdorff space (cf. also Compact space), let $ C ( X ) $
be the Banach algebra of all complex-valued continuous functions on $ X $
with the supremum norm and let $ A $
be a linear subspace of $ C ( X ) $
containing the constant functions on $ X $.
For $ t \in X $,
let $ \tau _ {t} \in A ^ {*} $
be defined by $ \tau _ {t} ( f ) = f ( t ) $
for all $ f \in A $
and let $ K ( A ) $
denote the set $ \{ {x ^ {*} \in A ^ {*} } : {\| {x ^ {*} } \| = x ^ {*} ( 1 ) = 1 } \} $.
The Choquet boundary for $ A $
is defined as the set
$$
{ \mathop{\rm Ch} } ( A ) = \left \{ {t \in X } : {\tau _ {t} \in { \mathop{\rm ext} } ( K ( A ) ) } \right \} ,
$$
where $ { \mathop{\rm ext} } ( K ( A ) ) $
denotes the set of extreme points of $ K ( A ) $.
Other relevant concepts involved in the study of the Choquet boundary are the boundary and the Shilov boundary. A boundary for $ A $
is a subset $ E $
of $ X $
such that for each $ f \in A $,
there exists a $ t \in E $
such that $ | {f ( t ) } | = \| f \| _ \infty $(
cf. also Boundary (in the theory of uniform algebras)). If there is a smallest closed boundary for $ A $,
then it is called the Shilov boundary for $ A $;
it is denoted by $ \delta A $.
The motivation for these concepts comes from the classical theory of analytic functions (cf. also Analytic function). If $ D $
denotes the closed unit disc and $ A ( D ) $
is the linear subspace of $ C ( D ) $
consisting of all complex-valued functions that are continuous on $ D $
and analytic inside $ D $,
then, by the maximum-modulus principle, for each $ f \in A ( D ) $
there exists a $ t \in \Gamma $(
the unit circle) such that $ | {f ( t ) } | = \| f \| _ \infty $.
In fact, $ \Gamma $
is the smallest closed set having this property. A natural question to ask is: Given an arbitrary linear subspace $ A $
of $ C ( X ) $,
does there exist a subset of $ X $
having properties similar to $ \Gamma $?
Investigations in this direction have led to the introduction of the above concepts.
It is clear from the above discussion that $ { \mathop{\rm Ch} } ( A ( D ) ) = \delta ( A ( D ) ) = \Gamma $.
Also, $ { \mathop{\rm Ch} } ( C ( X ) ) = X $
and $ { \mathop{\rm Ch} } ( P ( D _ {2} ) ) = \delta ( P ( D _ {2} ) ) = \Gamma _ {2} $,
where $ D _ {2} = D \times D $,
$ \Gamma _ {2} = \Gamma \times \Gamma $,
and $ P ( D _ {2} ) $
is the uniform closure on $ D _ {2} $
of the algebra of all polynomials in two complex variables (cf. also Uniform space).
In general, $ { \mathop{\rm Ch} } ( A ) $
is a boundary of $ A $
and hence $ { \mathop{\rm Ch} } ( A ) \neq \emptyset $.
If, in addition, $ A $
separates the points of $ X $(
cf. Uniform algebra), then $ { \mathop{\rm Ch} } ( A ) $
is dense in $ \delta A $.
Also, in this case, $ t \in { \mathop{\rm Ch} } ( A ) $
if and only if the $ \varepsilon _ {t} $(
the unit mass concentrated at $ t $)
is the unique representing measure for $ \tau _ {t} $.
This equivalent description is used as a definition of Choquet boundary in [a1].
If $ A $
is a subalgebra of $ C ( X ) $
containing the constants and separating the points of $ X $,
then the Bishop boundary for $ A $
can be defined as the set of all peak points for $ A $,
that is, the set
$$
\rho A = \left \{ {t \in X } : {\exists f \in A: \left | {f ( t ) } \right | < \left | {f ( s ) } \right | , \forall s \in X \setminus \{ t \} } \right \} .
$$
For any such algebra $ A $,
$ \rho A \subseteq { \mathop{\rm Ch} } ( A ) \subseteq \delta A $
and if, in addition, $ X $
is metrizable (cf. Metrizable space), then $ { \mathop{\rm Ch} } ( A ) $
is a $ G _ \delta $-
set. However, if $ X $
is not metrizable, then the following example [a5] shows that $ { \mathop{\rm Ch} } ( A ) $
need not even be a Borel set. Let $ \Lambda $
be an uncountable index set and for each $ \lambda \in \Lambda $,
let $ A _ \lambda = \{ {f \in A ( D ) } : {f ( 0 ) = f ( 1 ) } \} $
and $ B _ \lambda = \Gamma - \{ 1 \} $.
Then for $ U = \otimes \{ {A _ \lambda } : {\lambda \in \Lambda } \} $
one has $ { \mathop{\rm Ch} } ( U ) = \prod \{ {B _ \lambda } : {\lambda \in \Lambda } \} $,
which is not a Borel set since $ \Lambda $
is uncountable.
If $ A $
is a uniform algebra (i.e. a closed subalgebra of $ C ( X ) $
containing the constants and separating the points of $ X $),
then the following are equivalent
i) $ t \in { \mathop{\rm Ch} } ( A ) $;
ii) for each open neighbourhood $ U $
of $ t $
there is an $ f \in A $
such that $ \| f \| _ \infty = 1 $
and $ | {f ( s ) } | < 1 $
for all $ s \in X \setminus U $;
iii) there exists a family of peak sets $ \{ E _ {f _ \alpha } \} $
for $ A $
such that
$$
\cap _ \alpha E _ {f _ \alpha } = \{ t \} ,
$$
where, for $ f _ \alpha \in A $,
$$
E _ {f _ \alpha } = \left \{ {t \in X } : {\left | {f _ \alpha ( t ) } \right | = \left \| {f _ \alpha } \right \| _ \infty } \right \} ;
$$
iv) given $ 0 < \alpha < \beta < 1 $,
if $ U $
is an open neighbourhood of $ t $,
then there is an $ f \in A $
such that $ \| f \| _ \infty < 1 $,
$ | {f ( t ) } | > \beta $
and $ | {f ( s ) } | < \alpha $
for $ s \in X \setminus U $.
If $ A $
is a uniform algebra and $ X $
is metrizable, then $ { \mathop{\rm Ch} } ( A ) = \rho A $.
The concept of Choquet boundary can be extended to any arbitrary commutative Banach algebra via Gel'fand theory. If $ A $
is any commutative Banach algebra (cf. Commutative Banach algebra) with identity, then its maximal ideal space $ riangle ( A ) $
is compact Hausdorff and the Gel'fand representation $ {\widehat{A} } $
of $ A $
is a subalgebra of $ C ( riangle ( A ) ) $
separating the points of $ X $
and containing the constants. Hence, one can define the Choquet boundary of $ A $
as $ { \mathop{\rm Ch} } ( {\widehat{A} } ) $.
The concept of Choquet boundary has been extended to real function algebras in [a2].
The notion of Choquet boundary is useful in characterizing onto linear isometries of certain function spaces. In particular, if $ A $
is a subalgebra of $ C ( X ) $
separating points and containing the constants and if $ T : A \rightarrow A $
is a linear isometric mapping (linear isometry) of $ A $
onto $ A $
such that $ T ( 1 ) = 1 $,
then one can show that $ T $
is an algebra isometry of $ A $
onto $ A $,
[a3], p. 243.
References
[a1] | A. Browder, "Introduction to function algebras" , W.A. Benjamin (1969) |
[a2] | S.H. Kulkarni, B.V. Limaye, "Real function algebras" , M. Dekker (1992) |
[a3] | R. Larsen, "Banach algebras: an introduction" , M. Dekker (1973) |
[a4] | R.R. Phelps, "Lectures on Choquet's theorem" , v. Nostrand (1966) |
[a5] | E.L. Stout, "The theory of uniform algebras" , Bogden and Quigley (1971) |