Difference between revisions of "Coherent space"
From Encyclopedia of Mathematics
(Start article: Coherent space) |
(→References: isbn link) |
||
Line 7: | Line 7: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.T. Johnstone, "Stone spaces" , Cambridge Univ. Press (1982) ISBN 0-521-33779-8</TD></TR> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.T. Johnstone, "Stone spaces" , Cambridge Univ. Press (1982) {{ISBN|0-521-33779-8}}</TD></TR> |
</table> | </table> | ||
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 11:57, 23 November 2023
spectral space, quasi-Boolean space
A topological space which is sober and for which the compact open subsets form a basis for the topology.
A Hausdorff coherent space is a Stone space.
References
[1] | P.T. Johnstone, "Stone spaces" , Cambridge Univ. Press (1982) ISBN 0-521-33779-8 |
How to Cite This Entry:
Coherent space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_space&oldid=37281
Coherent space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_space&oldid=37281