Difference between revisions of "Normal matrix"
From Encyclopedia of Mathematics
(Category:Special matrices) |
(isbn) |
||
Line 8: | Line 8: | ||
====References==== | ====References==== | ||
− | * Lloyd N. Trefethen, David Bau III, ''Numerical Linear Algebra'' SIAM (1997) ISBN 0898713617 | + | * Lloyd N. Trefethen, David Bau III, ''Numerical Linear Algebra'' SIAM (1997) {{ISBN|0898713617}} |
[[Category:Special matrices]] | [[Category:Special matrices]] |
Latest revision as of 05:42, 22 April 2023
A square complex matrix $A$ that commutes with its adjoint matrix $A^*$: that is, $AA^*=A^*A$.
Comments
See also Normal operator.
The eigenvectors of a normal matrix form an orthonormal system. A matrix $A$ is normal if and only if it is unitarily similar to a diagonal matrix: $\Delta = U^{-1} A U$ with $u$ a unitary matrix.
References
- Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra SIAM (1997) ISBN 0898713617
How to Cite This Entry:
Normal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_matrix&oldid=33757
Normal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_matrix&oldid=33757