Namespaces
Variants
Actions

Difference between revisions of "Persian curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(gather refs)
Line 29: Line 29:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Gomez Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR>
 +
</table>
  
 
+
{{OldImage}}
 
 
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Gomez Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR></table>
 

Revision as of 14:02, 9 April 2023

spiric curve

A plane algebraic curve of order four that is the line of intersection between the surface of a torus and a plane parallel to its axis (see Fig. a, Fig. b, Fig. c). The equation in rectangular coordinates is

$$(x^2+y^2+p^2+d^2-r^2)^2=4d^2(x^2+p^2),$$

where $r$ is the radius of the circle describing the torus, $d$ is the distance from the origin to its centre and $p$ is the distance from the axis of the torus to the plane. The following are Persian curves: the Booth lemniscate, the Cassini oval and the Bernoulli lemniscate.

Figure: p072400a

$d>r$.

Figure: p072400b

$d=r$.

Figure: p072400c

$d<r$.

The name is after the Ancient Greek geometer Persei (2nd century B.C.), who examined it in relation to research on various ways of specifying curves.

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[a1] F. Gomez Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971)
[a2] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Persian curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Persian_curve&oldid=31952
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article