Namespaces
Variants
Actions

Difference between revisions of "Kodaira theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
k0556401.png
 +
$#A+1 = 31 n = 1
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/K055/K.0505640 Kodaira theorem,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Kodaira's vanishing theorem''
 
''Kodaira's vanishing theorem''
  
A theorem on the vanishing of the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556401.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556402.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556403.png" /> is the sheaf of holomorphic sections of the [[Negative vector bundle|negative vector bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556404.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556405.png" /> on a compact [[Complex manifold|complex manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556406.png" />. An equivalent statement of Kodaira's vanishing theorem is that
+
A theorem on the vanishing of the cohomology groups $  H  ^ {i} ( X, {\mathcal O} ( L) ) $,  
 +
$  i < \mathop{\rm dim}  X $,  
 +
where $  {\mathcal O} ( L) $
 +
is the sheaf of holomorphic sections of the [[Negative vector bundle|negative vector bundle]] $  L $
 +
of rank $  1 $
 +
on a compact [[Complex manifold|complex manifold]] $  X $.  
 +
An equivalent statement of Kodaira's vanishing theorem is that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556407.png" /></td> </tr></table>
+
$$
 +
H  ^ {i} ( X, {\mathcal O} ( L \otimes K _ {X} ) )  = 0 ,\ \
 +
i > 0 ,
 +
$$
  
for any [[Positive vector bundle|positive vector bundle]] of rank 1 (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556408.png" /> denotes the canonical line bundle on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k0556409.png" />). In terms of divisors (cf. [[Divisor|Divisor]]) Kodaira's vanishing theorem is stated as the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564010.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564011.png" /> and any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564012.png" /> such that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564014.png" /> is a hyperplane section in some projective imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564015.png" />.
+
for any [[Positive vector bundle|positive vector bundle]] of rank 1 (here $  K _ {X} $
 +
denotes the canonical line bundle on $  X $).  
 +
In terms of divisors (cf. [[Divisor|Divisor]]) Kodaira's vanishing theorem is stated as the equation $  H  ^ {i} ( X , {\mathcal O} _ {X} ( - D ) ) = 0 $
 +
for $  i < \mathop{\rm dim}  X $
 +
and any divisor $  D $
 +
such that for some $  n \geq  1 $,  
 +
$  n D $
 +
is a hyperplane section in some projective imbedding of $  X $.
  
 
The theorem was proved by transcendental methods by K. Kodaira [[#References|[1]]] (see also [[#References|[2]]]) as a generalization to arbitrary dimension of the classical theorem on the regularity of an adjoint system on an algebraic surface. There exists an example of a normal algebraic surface over a field of positive characteristic for which Kodaira's vanishing theorem is false [[#References|[4]]].
 
The theorem was proved by transcendental methods by K. Kodaira [[#References|[1]]] (see also [[#References|[2]]]) as a generalization to arbitrary dimension of the classical theorem on the regularity of an adjoint system on an algebraic surface. There exists an example of a normal algebraic surface over a field of positive characteristic for which Kodaira's vanishing theorem is false [[#References|[4]]].
Line 11: Line 39:
 
Kodaira's theorem also holds for holomorphic vector bundles of arbitrary rank that are negative in the sense of J. Nakano. The following result is also a generalization of Kodaira's theorem:
 
Kodaira's theorem also holds for holomorphic vector bundles of arbitrary rank that are negative in the sense of J. Nakano. The following result is also a generalization of Kodaira's theorem:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564016.png" /></td> </tr></table>
+
$$
 +
H  ^ {i} ( X , \Omega  ^ {p} ( L) )  = 0 \ \
 +
\textrm{ for } \
 +
p + i \geq  \mathop{\rm dim}  X + r ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564017.png" /> is a weakly-positive vector bundle of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564018.png" /> on the compact complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564020.png" /> is the sheaf of holomorphic forms (cf. [[Holomorphic form|Holomorphic form]]) of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564021.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564022.png" />. For weakly-negative vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564023.png" />, vanishing takes place when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564024.png" />. Analogues of these theorems have been obtained for weakly-complete manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564025.png" />, that is, manifolds admitting a smooth [[Pluriharmonic function|pluriharmonic function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564026.png" /> such that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564027.png" /> is relatively compact in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564028.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564029.png" />, and for compact complex spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564030.png" /> having <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055640/k05564031.png" /> algebraically-independent meromorphic functions [[#References|[5]]].
+
where $  L $
 +
is a weakly-positive vector bundle of rank $  r $
 +
on the compact complex manifold $  X $,  
 +
and $  \Omega  ^ {p} ( L) = \Omega  ^ {p} \otimes {\mathcal O} ( L) $
 +
is the sheaf of holomorphic forms (cf. [[Holomorphic form|Holomorphic form]]) of degree $  p $
 +
with values in $  L $.  
 +
For weakly-negative vector bundles $  L $,  
 +
vanishing takes place when $  p + i \leq  \mathop{\rm dim}  X - r $.  
 +
Analogues of these theorems have been obtained for weakly-complete manifolds $  X $,  
 +
that is, manifolds admitting a smooth [[Pluriharmonic function|pluriharmonic function]] $  \psi $
 +
such that the set $  \{ {x \in X } : {\psi ( x) < c } \} $
 +
is relatively compact in $  X $
 +
for all $  c \in \mathbf R $,  
 +
and for compact complex spaces $  X $
 +
having $  n = \mathop{\rm dim}  X $
 +
algebraically-independent meromorphic functions [[#References|[5]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kodaira, "On a differential geometric method in the theory of analytic stacks" ''Proc. Nat. Acad. Sci. USA'' , '''39''' (1953) pp. 1268–1273 {{MR|0066693}} {{ZBL|0053.11701}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Mumford, "Pathologies III" ''Amer. J. Math.'' , '''89''' : 1 (1967) pp. 94–104 {{MR|0217091}} {{ZBL|0146.42403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" ''J. Soviet Math.'' , '''14''' : 4 (1980) pp. 1363–1407 ''Itogi Nauk. Algebra Topol. Geom.'' , '''15''' (1977) pp. 93–171 {{MR|}} {{ZBL|0449.32020}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kodaira, "On a differential geometric method in the theory of analytic stacks" ''Proc. Nat. Acad. Sci. USA'' , '''39''' (1953) pp. 1268–1273 {{MR|0066693}} {{ZBL|0053.11701}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Mumford, "Pathologies III" ''Amer. J. Math.'' , '''89''' : 1 (1967) pp. 94–104 {{MR|0217091}} {{ZBL|0146.42403}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" ''J. Soviet Math.'' , '''14''' : 4 (1980) pp. 1363–1407 ''Itogi Nauk. Algebra Topol. Geom.'' , '''15''' (1977) pp. 93–171 {{MR|}} {{ZBL|0449.32020}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:14, 5 June 2020


Kodaira's vanishing theorem

A theorem on the vanishing of the cohomology groups $ H ^ {i} ( X, {\mathcal O} ( L) ) $, $ i < \mathop{\rm dim} X $, where $ {\mathcal O} ( L) $ is the sheaf of holomorphic sections of the negative vector bundle $ L $ of rank $ 1 $ on a compact complex manifold $ X $. An equivalent statement of Kodaira's vanishing theorem is that

$$ H ^ {i} ( X, {\mathcal O} ( L \otimes K _ {X} ) ) = 0 ,\ \ i > 0 , $$

for any positive vector bundle of rank 1 (here $ K _ {X} $ denotes the canonical line bundle on $ X $). In terms of divisors (cf. Divisor) Kodaira's vanishing theorem is stated as the equation $ H ^ {i} ( X , {\mathcal O} _ {X} ( - D ) ) = 0 $ for $ i < \mathop{\rm dim} X $ and any divisor $ D $ such that for some $ n \geq 1 $, $ n D $ is a hyperplane section in some projective imbedding of $ X $.

The theorem was proved by transcendental methods by K. Kodaira [1] (see also [2]) as a generalization to arbitrary dimension of the classical theorem on the regularity of an adjoint system on an algebraic surface. There exists an example of a normal algebraic surface over a field of positive characteristic for which Kodaira's vanishing theorem is false [4].

Kodaira's theorem also holds for holomorphic vector bundles of arbitrary rank that are negative in the sense of J. Nakano. The following result is also a generalization of Kodaira's theorem:

$$ H ^ {i} ( X , \Omega ^ {p} ( L) ) = 0 \ \ \textrm{ for } \ p + i \geq \mathop{\rm dim} X + r , $$

where $ L $ is a weakly-positive vector bundle of rank $ r $ on the compact complex manifold $ X $, and $ \Omega ^ {p} ( L) = \Omega ^ {p} \otimes {\mathcal O} ( L) $ is the sheaf of holomorphic forms (cf. Holomorphic form) of degree $ p $ with values in $ L $. For weakly-negative vector bundles $ L $, vanishing takes place when $ p + i \leq \mathop{\rm dim} X - r $. Analogues of these theorems have been obtained for weakly-complete manifolds $ X $, that is, manifolds admitting a smooth pluriharmonic function $ \psi $ such that the set $ \{ {x \in X } : {\psi ( x) < c } \} $ is relatively compact in $ X $ for all $ c \in \mathbf R $, and for compact complex spaces $ X $ having $ n = \mathop{\rm dim} X $ algebraically-independent meromorphic functions [5].

References

[1] K. Kodaira, "On a differential geometric method in the theory of analytic stacks" Proc. Nat. Acad. Sci. USA , 39 (1953) pp. 1268–1273 MR0066693 Zbl 0053.11701
[2] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) MR0608414 Zbl 0435.32004
[3] D. Mumford, "Pathologies III" Amer. J. Math. , 89 : 1 (1967) pp. 94–104 MR0217091 Zbl 0146.42403
[4] O. Zariski, "Algebraic surfaces" , Springer (1971) MR0469915 Zbl 0219.14020
[5] A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" J. Soviet Math. , 14 : 4 (1980) pp. 1363–1407 Itogi Nauk. Algebra Topol. Geom. , 15 (1977) pp. 93–171 Zbl 0449.32020

Comments

Counterexamples to Kodaira's theorem for non-singular varieties over a field of positive characteristic were given by M. Raynaud [a1]. There exists a much stronger version of Kodaira's theorem, due to E. Viehweg and Y. Kawamata [a2].

Recently, many generalizations of Kodaira vanishing have been found, see [a3].

References

[a1] M. Raynaud, "Contre-example du "vanishing theorem" en caractéristique " K.G. Ramanathan (ed.) , C.P. Ramanujam, a tribute , Springer (1978) pp. 273–278
[a2] E. Viehweg, "Vanishing theorems and positivity in algebraic fibre spaces" , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , 1 , Amer. Math. Soc. (1987) pp. 682–688 MR0934270 Zbl 0685.14013
[a3] J. Kollar, "Vanishing theorems for cohomology groups" S.J. Bloch (ed.) , Algebraic geometry (Bowdoin, 1985) , Proc. Symp. Pure Math. , 46 : 2 , Amer. Math. Soc. (1987) pp. 233–243 MR0927959 Zbl 0658.14012
How to Cite This Entry:
Kodaira theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kodaira_theorem&oldid=23879
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article