|
|
Line 1: |
Line 1: |
− | An [[Ideal|ideal]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106301.png" /> of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106302.png" /> is said to be indecomposable if, for any ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106304.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106305.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106306.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106307.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106308.png" />. The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106309.png" /> is called a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063011.png" /> for some ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063013.png" />. A block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063014.png" /> is defined to be any ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063015.png" /> which is an indecomposable direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063016.png" />. By a block idempotent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063017.png" /> one understands any primitive [[Idempotent|idempotent]] of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063018.png" /> (cf. also [[Centre of a ring|Centre of a ring]]). An ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063020.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063021.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063022.png" /> for some (necessarily unique) block idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063024.png" />. Thus blocks and block idempotents determine each other.
| + | <!-- |
| + | b1106301.png |
| + | $#A+1 = 113 n = 0 |
| + | $#C+1 = 113 : ~/encyclopedia/old_files/data/B110/B.1100630 Block |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Any decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063025.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063026.png" />, where each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063027.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063028.png" />, is called a block decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063029.png" />. In general, such a decomposition need not exist, but it does exist if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063030.png" /> is semi-perfect (cf. [[Perfect ring|Perfect ring]]). In the classical case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063031.png" /> is semi-primitive Artinian (cf. [[Primitive ring|Primitive ring]]; [[Artinian ring|Artinian ring]]), each block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063032.png" /> is a complete matrix ring over a suitable division ring, and the number of blocks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063033.png" /> is equal to the number of non-isomorphic simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063034.png" />-modules.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The study of blocks is especially important in the context of group representation theory (see [[Representation of a group|Representation of a group]]; [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]]). Here, the role of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063035.png" /> is played by the group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063037.png" /> is a [[Finite group|finite group]] and the commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063038.png" /> is assumed to be a complete Noetherian semi-local ring (cf. also [[Commutative ring|Commutative ring]]; [[Noetherian ring|Noetherian ring]]; [[Local ring|Local ring]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063039.png" /> has prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063040.png" />. The most important special cases are:
| + | An [[Ideal|ideal]] $ I $ |
| + | of a ring $ A $ |
| + | is said to be indecomposable if, for any ideals $ X $ |
| + | and $ Y $ |
| + | of $ A $, |
| + | $ I = X \oplus Y $ |
| + | implies $ X = 0 $ |
| + | or $ Y = 0 $. |
| + | The ideal $ I $ |
| + | is called a direct summand of $ A $ |
| + | if $ A = I \oplus J $ |
| + | for some ideal $ J $ |
| + | of $ A $. |
| + | A block of $ A $ |
| + | is defined to be any ideal of $ A $ |
| + | which is an indecomposable direct summand of $ A $. |
| + | By a block idempotent of $ A $ |
| + | one understands any primitive [[Idempotent|idempotent]] of the centre of $ A $( |
| + | cf. also [[Centre of a ring|Centre of a ring]]). An ideal $ B $ |
| + | of $ A $ |
| + | is a block of $ A $ |
| + | if and only if $ B = Ae $ |
| + | for some (necessarily unique) block idempotent $ e $ |
| + | of $ A $. |
| + | Thus blocks and block idempotents determine each other. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063041.png" /> is a complete discrete valuation ring of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063042.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063043.png" /> of prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063044.png" />;
| + | Any decomposition of $ A $ |
| + | of the form $ A = B _ {1} \oplus \dots \oplus B _ {n} $, |
| + | where each $ B _ {i} $ |
| + | is a block of $ A $, |
| + | is called a block decomposition of $ A $. |
| + | In general, such a decomposition need not exist, but it does exist if $ A $ |
| + | is semi-perfect (cf. [[Perfect ring|Perfect ring]]). In the classical case where $ A $ |
| + | is semi-primitive Artinian (cf. [[Primitive ring|Primitive ring]]; [[Artinian ring|Artinian ring]]), each block of $ A $ |
| + | is a complete matrix ring over a suitable division ring, and the number of blocks of $ A $ |
| + | is equal to the number of non-isomorphic simple $ A $- |
| + | modules. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063045.png" /> is a field of prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063046.png" />.
| + | The study of blocks is especially important in the context of group representation theory (see [[Representation of a group|Representation of a group]]; [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]]). Here, the role of $ A $ |
| + | is played by the group algebra $ RG $, |
| + | where $ G $ |
| + | is a [[Finite group|finite group]] and the commutative ring $ R $ |
| + | is assumed to be a complete Noetherian semi-local ring (cf. also [[Commutative ring|Commutative ring]]; [[Noetherian ring|Noetherian ring]]; [[Local ring|Local ring]]) such that $ R/J ( R ) $ |
| + | has prime characteristic $ p $. |
| + | The most important special cases are: |
| | | |
− | One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063047.png" /> into blocks. The main idea is due to R. Brauer and can be described as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063048.png" /> be a [[Finite group|finite group]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063049.png" /> be a prime number. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063050.png" /> is a complete discrete [[Valuation|valuation]] ring of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063052.png" /> is the quotient field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063054.png" /> is of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063055.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063056.png" /> be the set of all irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063057.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063058.png" /> (cf. [[Character of a group|Character of a group]]) and write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063059.png" /> to indicate that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063060.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063061.png" /> whose corresponding block idempotent is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063062.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063063.png" />. The character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063064.png" /> is said to belong to the block <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063066.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063067.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063068.png" /> is extended by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063069.png" />-linearity to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063070.png" />). It turns out that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063071.png" /> are all distinct blocks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063072.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063073.png" /> is a disjoint union of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063076.png" /> denotes the set of irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063077.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063078.png" /> belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063079.png" />. In the classical case studied by Brauer, namely when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063080.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063081.png" />, the irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063082.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063083.png" /> are identifiable with the irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063084.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063085.png" />.
| + | $ R $ |
| + | is a complete discrete valuation ring of characteristic $ 0 $ |
| + | with $ R/J ( R ) $ |
| + | of prime characteristic $ p $; |
| | | |
− | Assume that, in the context of the previous paragraph, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063086.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063087.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063088.png" /> be a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063089.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063090.png" /> be the order of Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063091.png" />-subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063092.png" /> (cf. [[Sylow subgroup|Sylow subgroup]]). It turns out that there exists an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063093.png" />, called the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063094.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063095.png" /> is the largest power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063096.png" /> which divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063097.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063098.png" />. The notion of the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063099.png" /> can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630100.png" /> is a complete Noetherian semi-local ring such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630101.png" /> has prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630102.png" /> (see [[#References|[a5]]]; [[Noetherian ring|Noetherian ring]]).
| + | $ R $ |
| + | is a field of prime characteristic $ p $. |
| | | |
− | For the classical case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630103.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630104.png" />, one has the following famous problem, frequently called the Brauer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630106.png" />-conjecture. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630107.png" /> be a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630108.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630109.png" />. Is it true that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630110.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630111.png" /> is the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630112.png" />? Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630113.png" />-conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630114.png" />-conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [[#References|[a5]]]).
| + | One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of $ G $ |
| + | into blocks. The main idea is due to R. Brauer and can be described as follows. Let $ G $ |
| + | be a [[Finite group|finite group]] and let $ p $ |
| + | be a prime number. Assume that $ R $ |
| + | is a complete discrete [[Valuation|valuation]] ring of characteristic $ 0 $, |
| + | $ K $ |
| + | is the quotient field of $ R $ |
| + | and $ R/J ( R ) $ |
| + | is of characteristic $ p $. |
| + | Let $ { \mathop{\rm Irr} } ( G ) $ |
| + | be the set of all irreducible $ K $- |
| + | characters of $ G $( |
| + | cf. [[Character of a group|Character of a group]]) and write $ B = B ( e ) $ |
| + | to indicate that $ B $ |
| + | is a block of $ RG $ |
| + | whose corresponding block idempotent is $ e $, |
| + | i.e., $ B = RGe $. |
| + | The character $ \chi \in { \mathop{\rm Irr} } ( G ) $ |
| + | is said to belong to the block $ B = B ( e ) $ |
| + | of $ RG $ |
| + | if $ \chi ( e ) \neq 0 $( |
| + | here $ \chi $ |
| + | is extended by $ K $- |
| + | linearity to the mapping $ \chi : {KG } \rightarrow K $). |
| + | It turns out that if $ B _ {1} \dots B _ {n} $ |
| + | are all distinct blocks of $ RG $, |
| + | then $ { \mathop{\rm Irr} } ( G ) $ |
| + | is a disjoint union of the $ { \mathop{\rm Irr} } ( B _ {i} ) $, |
| + | $ 1 \leq i \leq n $, |
| + | where $ { \mathop{\rm Irr} } ( B _ {i} ) $ |
| + | denotes the set of irreducible $ K $- |
| + | characters of $ G $ |
| + | belonging to $ B _ {i} $. |
| + | In the classical case studied by Brauer, namely when $ K $ |
| + | is a splitting field for $ G $, |
| + | the irreducible $ K $- |
| + | characters of $ G $ |
| + | are identifiable with the irreducible $ \mathbf C $- |
| + | characters of $ G $. |
| + | |
| + | Assume that, in the context of the previous paragraph, $ K $ |
| + | is a splitting field for $ G $. |
| + | Let $ B $ |
| + | be a block of $ RG $ |
| + | and let $ p ^ {a} $ |
| + | be the order of Sylow $ p $- |
| + | subgroups of $ G $( |
| + | cf. [[Sylow subgroup|Sylow subgroup]]). It turns out that there exists an integer $ d \geq 0 $, |
| + | called the defect of $ B $, |
| + | such that $ p ^ {a - d } $ |
| + | is the largest power of $ p $ |
| + | which divides $ \chi ( 1 ) $ |
| + | for all $ \chi \in { \mathop{\rm Irr} } ( B ) $. |
| + | The notion of the defect of $ B $ |
| + | can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that $ R $ |
| + | is a complete Noetherian semi-local ring such that $ R/J ( R ) $ |
| + | has prime characteristic $ p $( |
| + | see [[#References|[a5]]]; [[Noetherian ring|Noetherian ring]]). |
| + | |
| + | For the classical case where $ K $ |
| + | is a splitting field for $ G $, |
| + | one has the following famous problem, frequently called the Brauer $ k ( B ) $- |
| + | conjecture. Let $ B $ |
| + | be a block of $ RG $ |
| + | and let $ k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $. |
| + | Is it true that $ k ( B ) \leq p ^ {d} $, |
| + | where $ d $ |
| + | is the defect of $ B $? |
| + | Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $ k ( B ) $- |
| + | conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $ k ( B ) $- |
| + | conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [[#References|[a5]]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''1''' , North-Holland (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''2''' , North-Holland (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''4''' , North-Holland (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''5''' , North-Holland (1996)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''1''' , North-Holland (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''2''' , North-Holland (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''4''' , North-Holland (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''5''' , North-Holland (1996)</TD></TR></table> |
An ideal $ I $
of a ring $ A $
is said to be indecomposable if, for any ideals $ X $
and $ Y $
of $ A $,
$ I = X \oplus Y $
implies $ X = 0 $
or $ Y = 0 $.
The ideal $ I $
is called a direct summand of $ A $
if $ A = I \oplus J $
for some ideal $ J $
of $ A $.
A block of $ A $
is defined to be any ideal of $ A $
which is an indecomposable direct summand of $ A $.
By a block idempotent of $ A $
one understands any primitive idempotent of the centre of $ A $(
cf. also Centre of a ring). An ideal $ B $
of $ A $
is a block of $ A $
if and only if $ B = Ae $
for some (necessarily unique) block idempotent $ e $
of $ A $.
Thus blocks and block idempotents determine each other.
Any decomposition of $ A $
of the form $ A = B _ {1} \oplus \dots \oplus B _ {n} $,
where each $ B _ {i} $
is a block of $ A $,
is called a block decomposition of $ A $.
In general, such a decomposition need not exist, but it does exist if $ A $
is semi-perfect (cf. Perfect ring). In the classical case where $ A $
is semi-primitive Artinian (cf. Primitive ring; Artinian ring), each block of $ A $
is a complete matrix ring over a suitable division ring, and the number of blocks of $ A $
is equal to the number of non-isomorphic simple $ A $-
modules.
The study of blocks is especially important in the context of group representation theory (see Representation of a group; [a1], [a2], [a3], [a4], [a5]). Here, the role of $ A $
is played by the group algebra $ RG $,
where $ G $
is a finite group and the commutative ring $ R $
is assumed to be a complete Noetherian semi-local ring (cf. also Commutative ring; Noetherian ring; Local ring) such that $ R/J ( R ) $
has prime characteristic $ p $.
The most important special cases are:
$ R $
is a complete discrete valuation ring of characteristic $ 0 $
with $ R/J ( R ) $
of prime characteristic $ p $;
$ R $
is a field of prime characteristic $ p $.
One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of $ G $
into blocks. The main idea is due to R. Brauer and can be described as follows. Let $ G $
be a finite group and let $ p $
be a prime number. Assume that $ R $
is a complete discrete valuation ring of characteristic $ 0 $,
$ K $
is the quotient field of $ R $
and $ R/J ( R ) $
is of characteristic $ p $.
Let $ { \mathop{\rm Irr} } ( G ) $
be the set of all irreducible $ K $-
characters of $ G $(
cf. Character of a group) and write $ B = B ( e ) $
to indicate that $ B $
is a block of $ RG $
whose corresponding block idempotent is $ e $,
i.e., $ B = RGe $.
The character $ \chi \in { \mathop{\rm Irr} } ( G ) $
is said to belong to the block $ B = B ( e ) $
of $ RG $
if $ \chi ( e ) \neq 0 $(
here $ \chi $
is extended by $ K $-
linearity to the mapping $ \chi : {KG } \rightarrow K $).
It turns out that if $ B _ {1} \dots B _ {n} $
are all distinct blocks of $ RG $,
then $ { \mathop{\rm Irr} } ( G ) $
is a disjoint union of the $ { \mathop{\rm Irr} } ( B _ {i} ) $,
$ 1 \leq i \leq n $,
where $ { \mathop{\rm Irr} } ( B _ {i} ) $
denotes the set of irreducible $ K $-
characters of $ G $
belonging to $ B _ {i} $.
In the classical case studied by Brauer, namely when $ K $
is a splitting field for $ G $,
the irreducible $ K $-
characters of $ G $
are identifiable with the irreducible $ \mathbf C $-
characters of $ G $.
Assume that, in the context of the previous paragraph, $ K $
is a splitting field for $ G $.
Let $ B $
be a block of $ RG $
and let $ p ^ {a} $
be the order of Sylow $ p $-
subgroups of $ G $(
cf. Sylow subgroup). It turns out that there exists an integer $ d \geq 0 $,
called the defect of $ B $,
such that $ p ^ {a - d } $
is the largest power of $ p $
which divides $ \chi ( 1 ) $
for all $ \chi \in { \mathop{\rm Irr} } ( B ) $.
The notion of the defect of $ B $
can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that $ R $
is a complete Noetherian semi-local ring such that $ R/J ( R ) $
has prime characteristic $ p $(
see [a5]; Noetherian ring).
For the classical case where $ K $
is a splitting field for $ G $,
one has the following famous problem, frequently called the Brauer $ k ( B ) $-
conjecture. Let $ B $
be a block of $ RG $
and let $ k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $.
Is it true that $ k ( B ) \leq p ^ {d} $,
where $ d $
is the defect of $ B $?
Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $ k ( B ) $-
conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $ k ( B ) $-
conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [a5]).
References
[a1] | G. Karpilovsky, "Group representations" , 1 , North-Holland (1992) |
[a2] | G. Karpilovsky, "Group representations" , 2 , North-Holland (1993) |
[a3] | G. Karpilovsky, "Group representations" , 3 , North-Holland (1994) |
[a4] | G. Karpilovsky, "Group representations" , 4 , North-Holland (1995) |
[a5] | G. Karpilovsky, "Group representations" , 5 , North-Holland (1996) |