Difference between revisions of "Integral cosine"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0513701.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/I051/I.0501370 Integral cosine | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The special function defined, for real $ x > 0 $, | |
+ | by | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm Ci} ( x) = - | ||
+ | \int\limits _ { x } ^ \infty | ||
+ | |||
+ | \frac{\cos t }{t } | ||
+ | \ | ||
+ | d t = c + \mathop{\rm ln} x - | ||
+ | \int\limits _ { 0 } ^ { x } | ||
+ | |||
+ | \frac{1 - \cos t }{t } | ||
+ | \ | ||
+ | d t , | ||
+ | $$ | ||
+ | |||
+ | where $ c = 0.5772 \dots $ | ||
+ | is the [[Euler constant|Euler constant]]. Its graph is: | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i051370a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i051370a.gif" /> | ||
Line 9: | Line 35: | ||
Figure: i051370a | Figure: i051370a | ||
− | The graphs of the functions | + | The graphs of the functions $ y = \mathop{\rm ci} ( x) $ |
+ | and $ y = \mathop{\rm si} ( x) $. | ||
Some integrals related to the integral cosine are: | Some integrals related to the integral cosine are: | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | e ^ {- p t } \mathop{\rm Ci} ( q t ) d t = - | ||
+ | |||
+ | \frac{1}{2p} | ||
+ | \mathop{\rm ln} | ||
+ | \left ( | ||
+ | 1 + | ||
+ | \frac{p ^ {2} }{q ^ {2} } | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ { 0 } ^ \infty \cos t \mathop{\rm Ci} ( t) \ | ||
+ | d t = - | ||
+ | \frac \pi {4} | ||
+ | ,\ \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ^ {2} ( t) d t = | ||
+ | \frac \pi {2} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ( t) \mathop{\rm si} ( t) d t = - \mathop{\rm ln} 2 , | ||
+ | $$ | ||
− | + | where $ \mathop{\rm si} ( t) $ | |
+ | is the [[Integral sine|integral sine]] minus $ \pi / 2 $. | ||
− | + | For $ x $ | |
+ | small: | ||
− | + | $$ | |
+ | \mathop{\rm Ci} ( x) \approx c + \mathop{\rm ln} x . | ||
+ | $$ | ||
− | + | The asymptotic representation, for $ x $ | |
+ | large, is: | ||
− | + | $$ | |
+ | \mathop{\rm Ci} ( x) = \ | ||
− | + | \frac{\sin x }{x} | |
+ | P ( x) - | ||
− | + | \frac{\cos x }{x} | |
+ | Q ( x) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | P ( x) \sim \sum _ { k= } 0 ^ \infty | ||
+ | \frac{( - 1 ) ^ {k} ( | ||
+ | 2 k ) ! }{x ^ {2k} } | ||
+ | ,\ Q ( x) \sim \sum _ { k= } 0 ^ \infty | ||
+ | \frac{( - 1 ) ^ {k} ( 2 k + 1 ) ! }{x ^ {2k+} 1 } | ||
+ | . | ||
+ | $$ | ||
The integral cosine has the series representation: | The integral cosine has the series representation: | ||
− | + | $$ \tag{* } | |
+ | \mathop{\rm Ci} ( x) = c + \mathop{\rm ln} x - | ||
+ | \frac{x ^ {2} }{2!2} | ||
+ | |||
+ | + | ||
+ | \frac{x ^ {4} }{4!4} | ||
+ | - \dots + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | ( - 1 ) ^ {k} | ||
+ | \frac{x ^ {2k} }{( 2 k ) ! 2 k } | ||
+ | + \dots . | ||
+ | $$ | ||
− | < | + | As a function of the complex variable $ z $, |
+ | $ \mathop{\rm Ci} ( z) $, | ||
+ | defined by (*), is a single-valued analytic function in the $ z $- | ||
+ | plane with slit along the relative negative real axis $ ( - \pi < \mathop{\rm arg} z < \pi ) $. | ||
+ | The value of $ \mathop{\rm ln} z $ | ||
+ | here is taken to be $ \pi < \mathop{\rm Im} \mathop{\rm ln} z < \pi $. | ||
+ | The behaviour of $ \mathop{\rm Ci} ( z) $ | ||
+ | near the slit is determined by the limits | ||
− | + | $$ | |
+ | \lim\limits _ {\eta \downarrow 0 } \mathop{\rm Ci} ( x \pm i \eta ) = \ | ||
+ | \mathop{\rm Ci} ( | z | ) \pm \pi i ,\ x < 0 . | ||
+ | $$ | ||
− | + | The integral cosine is related to the [[Integral exponential function|integral exponential function]] $ \mathop{\rm Ei} ( z) $ | |
+ | by | ||
− | + | $$ | |
+ | \mathop{\rm Ci} ( z) = | ||
+ | \frac{1}{2} | ||
− | + | [ \mathop{\rm Ei} ( i z ) + \mathop{\rm Ei} ( - i z ) ] . | |
+ | $$ | ||
− | One sometimes uses the notation | + | One sometimes uses the notation $ \mathop{\rm ci} ( x) \equiv \mathop{\rm Ci} ( x) $. |
See also [[Si-ci-spiral|Si-ci-spiral]]. | See also [[Si-ci-spiral|Si-ci-spiral]]. | ||
Line 51: | Line 146: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Kratzer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Kratzer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The function | + | The function $ \mathop{\rm Ci} $ |
+ | is better known as the cosine integral. It can, of course, be defined by the integral (as above) in $ \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 } \} $. |
Revision as of 22:12, 5 June 2020
The special function defined, for real $ x > 0 $,
by
$$ \mathop{\rm Ci} ( x) = - \int\limits _ { x } ^ \infty \frac{\cos t }{t } \ d t = c + \mathop{\rm ln} x - \int\limits _ { 0 } ^ { x } \frac{1 - \cos t }{t } \ d t , $$
where $ c = 0.5772 \dots $ is the Euler constant. Its graph is:
Figure: i051370a
The graphs of the functions $ y = \mathop{\rm ci} ( x) $ and $ y = \mathop{\rm si} ( x) $.
Some integrals related to the integral cosine are:
$$ \int\limits _ { 0 } ^ \infty e ^ {- p t } \mathop{\rm Ci} ( q t ) d t = - \frac{1}{2p} \mathop{\rm ln} \left ( 1 + \frac{p ^ {2} }{q ^ {2} } \right ) , $$
$$ \int\limits _ { 0 } ^ \infty \cos t \mathop{\rm Ci} ( t) \ d t = - \frac \pi {4} ,\ \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ^ {2} ( t) d t = \frac \pi {2} , $$
$$ \int\limits _ { 0 } ^ \infty \mathop{\rm Ci} ( t) \mathop{\rm si} ( t) d t = - \mathop{\rm ln} 2 , $$
where $ \mathop{\rm si} ( t) $ is the integral sine minus $ \pi / 2 $.
For $ x $ small:
$$ \mathop{\rm Ci} ( x) \approx c + \mathop{\rm ln} x . $$
The asymptotic representation, for $ x $ large, is:
$$ \mathop{\rm Ci} ( x) = \ \frac{\sin x }{x} P ( x) - \frac{\cos x }{x} Q ( x) , $$
$$ P ( x) \sim \sum _ { k= } 0 ^ \infty \frac{( - 1 ) ^ {k} ( 2 k ) ! }{x ^ {2k} } ,\ Q ( x) \sim \sum _ { k= } 0 ^ \infty \frac{( - 1 ) ^ {k} ( 2 k + 1 ) ! }{x ^ {2k+} 1 } . $$
The integral cosine has the series representation:
$$ \tag{* } \mathop{\rm Ci} ( x) = c + \mathop{\rm ln} x - \frac{x ^ {2} }{2!2} + \frac{x ^ {4} }{4!4} - \dots + $$
$$ + ( - 1 ) ^ {k} \frac{x ^ {2k} }{( 2 k ) ! 2 k } + \dots . $$
As a function of the complex variable $ z $, $ \mathop{\rm Ci} ( z) $, defined by (*), is a single-valued analytic function in the $ z $- plane with slit along the relative negative real axis $ ( - \pi < \mathop{\rm arg} z < \pi ) $. The value of $ \mathop{\rm ln} z $ here is taken to be $ \pi < \mathop{\rm Im} \mathop{\rm ln} z < \pi $. The behaviour of $ \mathop{\rm Ci} ( z) $ near the slit is determined by the limits
$$ \lim\limits _ {\eta \downarrow 0 } \mathop{\rm Ci} ( x \pm i \eta ) = \ \mathop{\rm Ci} ( | z | ) \pm \pi i ,\ x < 0 . $$
The integral cosine is related to the integral exponential function $ \mathop{\rm Ei} ( z) $ by
$$ \mathop{\rm Ci} ( z) = \frac{1}{2} [ \mathop{\rm Ei} ( i z ) + \mathop{\rm Ei} ( - i z ) ] . $$
One sometimes uses the notation $ \mathop{\rm ci} ( x) \equiv \mathop{\rm Ci} ( x) $.
See also Si-ci-spiral.
References
[1] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[2] | E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German) |
[3] | A. Kratzer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960) |
[4] | N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian) |
Comments
The function $ \mathop{\rm Ci} $ is better known as the cosine integral. It can, of course, be defined by the integral (as above) in $ \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 } \} $.
Integral cosine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_cosine&oldid=16619