Integral sine
The special function defined for real $x$ by
$$\operatorname{Si}(x)=\int\limits_0^x\frac{\sin t}{t}\,dt.$$
For $x>0$ one has
$$\operatorname{Si}(x)=\frac\pi2-\int\limits_x^\infty\frac{\sin t}{t}\,dt.$$
One sometimes uses the notation
$$\operatorname{si}(x)=-\int\limits_x^\infty\frac{\sin t}{t}\,dt\equiv\operatorname{Si}(x)-\frac\pi2.$$
Some particular values are:
$$\operatorname{Si}(0)=0,\qquad\operatorname{Si}(\infty)=\frac\pi2,\qquad\operatorname{si}(\infty)=0.$$
Some special relations:
$$\operatorname{Si}(-x)=-\operatorname{Si}(x);\qquad\operatorname{si}(x)+\operatorname{si}(-x)=-\pi;$$
$$\int\limits_0^\infty\operatorname{si}^2(t)\,dt=\frac\pi2;\qquad\int\limits_0^\infty e^{-pt}\operatorname{si}(qt)\,dt=-\frac1p\arctan\frac pq;$$
$$\int\limits_0^\infty\sin t\operatorname{si}(t)\,dt=-\frac\pi4;\qquad\int\limits_0^\infty\operatorname{Ci}(t)\operatorname{si}(t)\,dt=-\ln2,$$
where $\operatorname{Ci}(t)$ is the integral cosine. For $x$ small,
$$\operatorname{Si}(x)\approx x.$$
The asymptotic representation for large $x$ is
$$\operatorname{Si}(x)=\frac\pi2-\frac{\cos x}{x}P(x)-\frac{\sin x}{x}Q(x),$$
where
$$P(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k)!}{x^{2k}},$$
$$Q(x)\sim\sum_{k=0}^\infty\frac{(-1)^k(2k+1)!}{x^{2k+1}}.$$
The integral sine has the series representation
$$\operatorname{Si}(x)=x-\frac{x^3}{3!\,3}+\dotsb+(-1)^k\frac{x^{2k+1}}{(2k+1)!\,(2k+1)}+\dotsb.\label{*}\tag{*}$$
As a function of the complex variable $z$, $\operatorname{Si}(z)$, defined by \eqref{*}, is an entire function of $z$ in the $z$-plane.
The integral sine is related to the integral exponential function $\operatorname{Ei}(z)$ by
$$\operatorname{si}(z)=\frac{1}{2i}[\operatorname{Ei}(iz)-\operatorname{Ei}(-iz)].$$
See also Si-ci-spiral.
For references, and the graph of the integral sine, see Integral cosine.
Comments
This function is better known as the sine integral.
Integral sine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_sine&oldid=43643