Difference between revisions of "CR-submanifold"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c1104801.png | ||
+ | $#A+1 = 46 n = 0 | ||
+ | $#C+1 = 46 : ~/encyclopedia/old_files/data/C110/C.1100480 CR\AAhsubmanifold | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ ( M,J,g ) $ | |
+ | be an almost Hermitian manifold (cf. also [[Hermitian structure|Hermitian structure]]), where $ J $ | ||
+ | is an [[Almost-complex structure|almost-complex structure]] on $ M $ | ||
+ | and $ g $ | ||
+ | is a [[Riemannian metric|Riemannian metric]] on $ M $ | ||
+ | satisfying $ g ( JX,JY ) = g ( X,Y ) $ | ||
+ | for any vector fields $ X $ | ||
+ | and $ Y $ | ||
+ | on $ M $. | ||
+ | A real submanifold $ N $ | ||
+ | of $ M $ | ||
+ | is said to be a complex (holomorphic) submanifold if the tangent bundle $ TN $ | ||
+ | of $ N $ | ||
+ | is invariant under $ J $, | ||
+ | i.e. $ J ( T _ {x} N ) = T _ {x} N $ | ||
+ | for any $ x \in N $. | ||
+ | Let $ TN ^ \perp $ | ||
+ | be the [[Normal bundle|normal bundle]] of $ N $. | ||
+ | Then $ N $ | ||
+ | is called a totally real (anti-invariant) submanifold if $ J ( T _ {x} N ) \subset T _ {x} N ^ \perp $ | ||
+ | for any $ x \in N $. | ||
− | the complementary orthogonal distribution | + | In 1978, A. Bejancu [[#References|[a1]]] introduced the notion of a CR-submanifold as a natural generalization of both complex submanifolds and totally real submanifolds. More precisely, $ N $ |
+ | is said to be a CR-submanifold if there exists a smooth distribution $ D $ | ||
+ | on $ N $ | ||
+ | such that: | ||
+ | |||
+ | $ D $ | ||
+ | is a holomorphic distribution, that is, $ J ( D _ {x} ) = D _ {x} $ | ||
+ | for any $ x \in N $; | ||
+ | |||
+ | the complementary orthogonal distribution $ D ^ \perp $ | ||
+ | of $ D $ | ||
+ | is a totally real distribution, that is, $ J ( D _ {x} ^ \perp ) \subset T _ {x} N ^ \perp $ | ||
+ | for any $ x \in N $. | ||
The above concept has been mainly investigated from the viewpoint of [[Differential geometry|differential geometry]] (cf. [[#References|[a2]]], [[#References|[a3]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]]). | The above concept has been mainly investigated from the viewpoint of [[Differential geometry|differential geometry]] (cf. [[#References|[a2]]], [[#References|[a3]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]]). | ||
− | Let | + | Let $ h $ |
+ | be the [[Second fundamental form|second fundamental form]] of the CR-submanifold $ N $. | ||
+ | Then one says that $ N $ | ||
+ | is $ D $- | ||
+ | geodesic, $ D ^ \perp $- | ||
+ | geodesic or mixed geodesic if $ h $ | ||
+ | vanishes on $ D $ | ||
+ | or $ D ^ \perp $, | ||
+ | or $ h ( X,Y ) = 0 $ | ||
+ | for any $ X $ | ||
+ | in $ D $ | ||
+ | and $ Y $ | ||
+ | in $ D ^ \perp $, | ||
+ | respectively. | ||
− | From the viewpoint of complex analysis, a CR-submanifold is an imbedded [[CR-manifold|CR-manifold]] in a complex manifold. In this case a real hypersurface | + | From the viewpoint of complex analysis, a CR-submanifold is an imbedded [[CR-manifold|CR-manifold]] in a complex manifold. In this case a real hypersurface $ N $ |
+ | of a complex manifold $ ( M,J ) $ | ||
+ | is a CR-submanifold (cf. [[#References|[a4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Bejancu, "CR submanifolds of a Kaehler manifold I" ''Proc. Amer. Math. Soc.'' , '''69''' (1978) pp. 134–142</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D.E. Blair, B.Y. Chen, "On CR submanifolds of Hermitian manifolds" ''Israel J. Math.'' , '''34''' (1979) pp. 353–363</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B.Y. Chen, "Geometry of submanifolds and its applications" , Tokyo Sci. Univ. (1981)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> K. Yano, M. Kon, "CR submanifolds of Kaehlerian and Sasakian manifolds" , Birkhäuser (1983)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> K. Yano, M. Kon, "Structures on manifolds" , World Sci. (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Bejancu, "CR submanifolds of a Kaehler manifold I" ''Proc. Amer. Math. Soc.'' , '''69''' (1978) pp. 134–142</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D.E. Blair, B.Y. Chen, "On CR submanifolds of Hermitian manifolds" ''Israel J. Math.'' , '''34''' (1979) pp. 353–363</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B.Y. Chen, "Geometry of submanifolds and its applications" , Tokyo Sci. Univ. (1981)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> K. Yano, M. Kon, "CR submanifolds of Kaehlerian and Sasakian manifolds" , Birkhäuser (1983)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> K. Yano, M. Kon, "Structures on manifolds" , World Sci. (1984)</TD></TR></table> |
Latest revision as of 06:29, 30 May 2020
Let $ ( M,J,g ) $
be an almost Hermitian manifold (cf. also Hermitian structure), where $ J $
is an almost-complex structure on $ M $
and $ g $
is a Riemannian metric on $ M $
satisfying $ g ( JX,JY ) = g ( X,Y ) $
for any vector fields $ X $
and $ Y $
on $ M $.
A real submanifold $ N $
of $ M $
is said to be a complex (holomorphic) submanifold if the tangent bundle $ TN $
of $ N $
is invariant under $ J $,
i.e. $ J ( T _ {x} N ) = T _ {x} N $
for any $ x \in N $.
Let $ TN ^ \perp $
be the normal bundle of $ N $.
Then $ N $
is called a totally real (anti-invariant) submanifold if $ J ( T _ {x} N ) \subset T _ {x} N ^ \perp $
for any $ x \in N $.
In 1978, A. Bejancu [a1] introduced the notion of a CR-submanifold as a natural generalization of both complex submanifolds and totally real submanifolds. More precisely, $ N $ is said to be a CR-submanifold if there exists a smooth distribution $ D $ on $ N $ such that:
$ D $ is a holomorphic distribution, that is, $ J ( D _ {x} ) = D _ {x} $ for any $ x \in N $;
the complementary orthogonal distribution $ D ^ \perp $ of $ D $ is a totally real distribution, that is, $ J ( D _ {x} ^ \perp ) \subset T _ {x} N ^ \perp $ for any $ x \in N $.
The above concept has been mainly investigated from the viewpoint of differential geometry (cf. [a2], [a3], [a5], [a6], [a7]).
Let $ h $ be the second fundamental form of the CR-submanifold $ N $. Then one says that $ N $ is $ D $- geodesic, $ D ^ \perp $- geodesic or mixed geodesic if $ h $ vanishes on $ D $ or $ D ^ \perp $, or $ h ( X,Y ) = 0 $ for any $ X $ in $ D $ and $ Y $ in $ D ^ \perp $, respectively.
From the viewpoint of complex analysis, a CR-submanifold is an imbedded CR-manifold in a complex manifold. In this case a real hypersurface $ N $ of a complex manifold $ ( M,J ) $ is a CR-submanifold (cf. [a4]).
References
[a1] | A. Bejancu, "CR submanifolds of a Kaehler manifold I" Proc. Amer. Math. Soc. , 69 (1978) pp. 134–142 |
[a2] | A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986) |
[a3] | D.E. Blair, B.Y. Chen, "On CR submanifolds of Hermitian manifolds" Israel J. Math. , 34 (1979) pp. 353–363 |
[a4] | A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991) |
[a5] | B.Y. Chen, "Geometry of submanifolds and its applications" , Tokyo Sci. Univ. (1981) |
[a6] | K. Yano, M. Kon, "CR submanifolds of Kaehlerian and Sasakian manifolds" , Birkhäuser (1983) |
[a7] | K. Yano, M. Kon, "Structures on manifolds" , World Sci. (1984) |
CR-submanifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=CR-submanifold&oldid=16186