Difference between revisions of "Isogonal"
(Importing text file) |
m (→Isogonal line.: link) |
||
Line 13: | Line 13: | ||
Given a triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300801.png" /> and a line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300802.png" /> from one of the vertices, say from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300803.png" />, to the opposite side. The corresponding isogonal line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png" /> is obtained by reflecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300805.png" /> with respect to the [[Bisectrix|bisectrix]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300806.png" />. | Given a triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300801.png" /> and a line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300802.png" /> from one of the vertices, say from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300803.png" />, to the opposite side. The corresponding isogonal line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png" /> is obtained by reflecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300805.png" /> with respect to the [[Bisectrix|bisectrix]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300806.png" />. | ||
− | If the lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300809.png" /> are concurrent (i.e. pass through a single point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008010.png" />, i.e. are Cevian lines), then so are the isogonal lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png" />. This follows fairly directly from the [[Ceva theorem|Ceva theorem]]. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008014.png" /> is called the isogonal conjugate point. If the [[Barycentric coordinates|barycentric coordinates]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008015.png" /> (often called trilinear coordinates in this setting) are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008016.png" />, then those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008017.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008018.png" /> | + | If the lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300809.png" /> are concurrent (i.e. pass through a single point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008010.png" />, i.e. are [[Cevian lines]]), then so are the isogonal lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png" />. This follows fairly directly from the [[Ceva theorem|Ceva theorem]]. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008014.png" /> is called the isogonal conjugate point. If the [[Barycentric coordinates|barycentric coordinates]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008015.png" /> (often called trilinear coordinates in this setting) are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008016.png" />, then those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008017.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008018.png" /> |
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080a.gif" /> |
Revision as of 18:59, 6 November 2016
Literally "same angle" . There are several concepts in mathematics involving isogonality.
Isogonal trajectory.
A trajectory that meets a given family of curves at a constant angle. See Isogonal trajectory.
Isogonal mapping.
A (differentiable) mapping that preserves angles. For instance, the stereographic projection of cartography has this property [a2]. See also Conformal mapping; Anti-conformal mapping.
Isogonal circles.
A circle is said to be isogonal with respect to two other circles if it makes the same angle with these two, [a1].
Isogonal line.
Given a triangle and a line from one of the vertices, say from , to the opposite side. The corresponding isogonal line is obtained by reflecting with respect to the bisectrix in .
If the lines , and are concurrent (i.e. pass through a single point , i.e. are Cevian lines), then so are the isogonal lines , , . This follows fairly directly from the Ceva theorem. The point is called the isogonal conjugate point. If the barycentric coordinates of (often called trilinear coordinates in this setting) are , then those of are
Figure: i130080a
Another notion in rather the same spirit is that of the isotomic line to , which is the line such that . Again it is true that if , , are concurrent, then so are , , . This follows directly from the Ceva theorem.
Figure: i130080b
The point is called the isotomic conjugate point. The barycentric coordinates of are , where , , are the lengths of the sides of the triangle. The Gergonne point is the isotomic conjugate of the Nagel point.
The involutions and , i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane , [a4].
References
[a1] | M. Berger, "Geometry" , I , Springer (1987) pp. 327 |
[a2] | D. Hilbert, S. Cohn-Vossen, "Geometry and the imagination" , Chelsea (1952) pp. 249 |
[a3] | R.A. Johnson, "Modern geometry" , Houghton–Mifflin (1929) |
[a4] | R.H. Eddy, J.B. Wilker, "Plane mappings of isogonal-isotomic type" Soochow J. Math. , 18 : 2 (1992) pp. 135–158 |
[a5] | N. Altshiller–Court, "College geometry" , Barnes & Noble (1952) |
[a6] | H.S.M. Coxeter, "The real projective plane" , Springer (1993) pp. 197–199 (Edition: Third) |
[a7] | F. Bachmann, "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer (1973) (Edition: Second) |
Isogonal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isogonal&oldid=12429