Difference between revisions of "Steenrod algebra"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0875001.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/S087/S.0807500 Steenrod algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The graded algebra $ A _ {p} $ | |
+ | over the field $ \mathbf Z _ {p} $ | ||
+ | of all stable cohomology operations (cf. [[Cohomology operation|Cohomology operation]]) modulo $ p $. | ||
+ | For any space ([[Spectrum of spaces|spectrum of spaces]]) $ X $, | ||
+ | the group $ H ^ \star ( X; \mathbf Z _ {p} ) $ | ||
+ | is a module over the Steenrod algebra $ A _ {p} $. | ||
− | + | The Steenrod algebra is multiplicatively generated by the Steenrod operations (cf. [[Steenrod operation|Steenrod operation]]). Thus, the Steenrod algebra $ A _ {2} $ | |
+ | is a graded associative algebra, multiplicatively generated by the symbols $ Sq ^ {i} $ | ||
+ | with $ \mathop{\rm deg} Sq ^ {i} = i $, | ||
+ | which satisfy the Adem relation: | ||
− | + | $$ | |
+ | Sq ^ {a} Sq ^ {b} = \ | ||
+ | \sum _ { t } \left ( \begin{array}{c} | ||
+ | b- t- 1 \\ | ||
+ | a- 2t | ||
+ | \end{array} | ||
+ | \right ) Sq ^ {a+} b- t Sq ^ {t} , | ||
+ | $$ | ||
− | + | $ a < 2b $, | |
+ | so that an additive basis (over $ \mathbf Z _ {2} $) | ||
+ | of the Steenrod algebra $ A _ {2} $ | ||
+ | consists of the operations $ Sq ^ {i _ {1} } \dots Sq ^ {i _ {r} } $, | ||
+ | $ i _ {k} \geq 2i _ {k+} 1 $( | ||
+ | the so-called Cartan–Serre basis). Similar results are true for $ A _ {p} $ | ||
+ | with $ p > 2 $. | ||
+ | Furthermore, | ||
− | + | $$ | |
+ | ( A _ {p} ) ^ {i} \cong H ^ {i+} n ( K( \mathbf Z _ {p} , n); \ | ||
+ | \mathbf Z _ {p} ) ,\ \ | ||
+ | n \textrm{ large } , | ||
+ | $$ | ||
− | induces the diagonal | + | where $ K( \mathbf Z _ {p} , n) $ |
+ | is an [[Eilenberg–MacLane space|Eilenberg–MacLane space]]. The multiplication | ||
+ | |||
+ | $$ | ||
+ | K( \mathbf Z _ {p} , m) \wedge K( \mathbf Z _ {p} , n ) \rightarrow K( \mathbf Z _ {p} , m+ n) | ||
+ | $$ | ||
+ | |||
+ | induces the diagonal $ \Delta : A _ {p} \rightarrow A _ {p} \otimes A _ {p} $ | ||
+ | in $ A _ {p} $, | ||
+ | which is a homomorphism of algebras, and, consequently, turns $ A _ {p} $ | ||
+ | into a [[Hopf algebra|Hopf algebra]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "The Steenrod algebra and its dual" ''Ann. of Math.'' , '''67''' (1958) pp. 150–171</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.K. Tangora, "Cohomology operations and applications in homotopy theory" , Harper & Row (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "The Steenrod algebra and its dual" ''Ann. of Math.'' , '''67''' (1958) pp. 150–171</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.K. Tangora, "Cohomology operations and applications in homotopy theory" , Harper & Row (1968)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The analogue of the Steenrod algebra for a cohomology theory defined by a spectrum | + | The analogue of the Steenrod algebra for a cohomology theory defined by a spectrum $ E $ |
+ | is $ E _ \star ( E) $; | ||
+ | cf. [[Generalized cohomology theories|Generalized cohomology theories]] and [[Spectrum of spaces|Spectrum of spaces]]. The $ E _ {2} $- | ||
+ | term of the Adams spectral sequence, cf. [[Spectral sequence|Spectral sequence]], $ \mathop{\rm Ext} _ {E _ \star ( E) } ^ {s, t } ( E _ \star ( X), E _ \star ( Y) \Rightarrow [ X, Y] _ \star ) $ | ||
+ | is a purely (homological) algebra construct obtained by regarding the homology groups as modules over the Hopf algebra $ E _ \star ( E) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapts. 18–19</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.F. Adams, "Stable homotopy and generalized homology" , Univ. Chicago Press (1974) pp. Part III, Chapts. 12, 15</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapts. 18–19</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.F. Adams, "Stable homotopy and generalized homology" , Univ. Chicago Press (1974) pp. Part III, Chapts. 12, 15</TD></TR></table> |
Latest revision as of 08:23, 6 June 2020
The graded algebra $ A _ {p} $
over the field $ \mathbf Z _ {p} $
of all stable cohomology operations (cf. Cohomology operation) modulo $ p $.
For any space (spectrum of spaces) $ X $,
the group $ H ^ \star ( X; \mathbf Z _ {p} ) $
is a module over the Steenrod algebra $ A _ {p} $.
The Steenrod algebra is multiplicatively generated by the Steenrod operations (cf. Steenrod operation). Thus, the Steenrod algebra $ A _ {2} $ is a graded associative algebra, multiplicatively generated by the symbols $ Sq ^ {i} $ with $ \mathop{\rm deg} Sq ^ {i} = i $, which satisfy the Adem relation:
$$ Sq ^ {a} Sq ^ {b} = \ \sum _ { t } \left ( \begin{array}{c} b- t- 1 \\ a- 2t \end{array} \right ) Sq ^ {a+} b- t Sq ^ {t} , $$
$ a < 2b $, so that an additive basis (over $ \mathbf Z _ {2} $) of the Steenrod algebra $ A _ {2} $ consists of the operations $ Sq ^ {i _ {1} } \dots Sq ^ {i _ {r} } $, $ i _ {k} \geq 2i _ {k+} 1 $( the so-called Cartan–Serre basis). Similar results are true for $ A _ {p} $ with $ p > 2 $. Furthermore,
$$ ( A _ {p} ) ^ {i} \cong H ^ {i+} n ( K( \mathbf Z _ {p} , n); \ \mathbf Z _ {p} ) ,\ \ n \textrm{ large } , $$
where $ K( \mathbf Z _ {p} , n) $ is an Eilenberg–MacLane space. The multiplication
$$ K( \mathbf Z _ {p} , m) \wedge K( \mathbf Z _ {p} , n ) \rightarrow K( \mathbf Z _ {p} , m+ n) $$
induces the diagonal $ \Delta : A _ {p} \rightarrow A _ {p} \otimes A _ {p} $ in $ A _ {p} $, which is a homomorphism of algebras, and, consequently, turns $ A _ {p} $ into a Hopf algebra.
References
[1] | N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962) |
[2] | J. Milnor, "The Steenrod algebra and its dual" Ann. of Math. , 67 (1958) pp. 150–171 |
[3] | M.K. Tangora, "Cohomology operations and applications in homotopy theory" , Harper & Row (1968) |
Comments
The analogue of the Steenrod algebra for a cohomology theory defined by a spectrum $ E $ is $ E _ \star ( E) $; cf. Generalized cohomology theories and Spectrum of spaces. The $ E _ {2} $- term of the Adams spectral sequence, cf. Spectral sequence, $ \mathop{\rm Ext} _ {E _ \star ( E) } ^ {s, t } ( E _ \star ( X), E _ \star ( Y) \Rightarrow [ X, Y] _ \star ) $ is a purely (homological) algebra construct obtained by regarding the homology groups as modules over the Hopf algebra $ E _ \star ( E) $.
References
[a1] | J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989) |
[a2] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapts. 18–19 |
[a3] | J.F. Adams, "Stable homotopy and generalized homology" , Univ. Chicago Press (1974) pp. Part III, Chapts. 12, 15 |
Steenrod algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steenrod_algebra&oldid=12348