Difference between revisions of "Smooth morphism"
(gather refs) |
|||
Line 51: | Line 51: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Eléments de | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes des schémas" ''Publ. Math. IHES'' : 32 (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR> |
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR> | ||
+ | </table> |
Latest revision as of 07:00, 21 July 2024
of schemes
The concept of a family of non-singular algebraic varieties (cf. Algebraic variety) generalized to the case of schemes. In the classical case of a morphism of complex algebraic varieties this concept reduces to the concept of a regular mapping (a submersion) of complex manifolds. A finitely-represented (local) morphism of schemes is called a smooth morphism if f is a flat morphism and if for any point y \in Y the fibre f ^ { - 1 } ( y) is a smooth scheme (over the field k( y) ). A scheme X is called a smooth scheme over a scheme Y , or a smooth Y - scheme, if the structure morphism f: X \rightarrow Y is a smooth morphism.
An example of a smooth Y - scheme is the affine space A _ {Y} ^ {n} . A special case of the concept of a smooth morphism is that of an étale morphism. Conversely, any smooth morphism f: X \rightarrow Y can be locally factored with respect to X into a composition of an étale morphism X \rightarrow A _ {Y} ^ {n} and a projection A _ {Y} ^ {n} \rightarrow Y .
A composite of smooth morphisms is again a smooth morphism; this is also true for any base change. A smooth morphism is distinguished by its differential property: A flat finitely-represented morphism f: X \rightarrow Y is a smooth morphism if and only if the sheaf of relative differentials is a locally free sheaf of rank \mathop{\rm dim} _ {x} f at a point x .
The concept of a smooth morphism is analogous to the concept of a Serre fibration in topology. E.g., a smooth morphism of complex algebraic varieties is a locally trivial differentiable fibration. In the general case the following analogue of the covering homotopy axiom is valid: For any affine scheme Y ^ \prime , any closed subscheme Y _ {0} ^ \prime of it which is definable by a nilpotent ideal and any morphism Y ^ \prime \rightarrow Y , the canonical mapping \mathop{\rm Hom} _ {Y} ( Y ^ \prime , X) \rightarrow \mathop{\rm Hom} _ {Y} ( Y _ {0} ^ \prime , X) is surjective.
If f: X \rightarrow Y is a smooth morphism and if the local ring {\mathcal O} _ {Y,y} at the point y \in Y is regular (respectively, normal or reduced), then the local ring {\mathcal O} _ {X,x} of any point x \in X with f( x) = y will also have this property.
References
[1] | A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes des schémas" Publ. Math. IHES : 32 (1967) MR0238860 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901 |
[2] | A. Grothendieck (ed.) et al. (ed.) , Revêtements étales et groupe fondamental. SGA 1 , Lect. notes in math. , 224 , Springer (1971) MR0354651 Zbl 1039.14001 |
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
Smooth morphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Smooth_morphism&oldid=55735