Difference between revisions of "Pitman estimator"
(latex details) |
(latex details) |
||
Line 24: | Line 24: | ||
$$ | $$ | ||
− | {\mathsf E} _ \theta X _ {1} ^ {2} = \int\limits _ {- \infty } ^ | + | {\mathsf E} _ \theta X _ {1} ^ {2} = \int\limits _ {- \infty } ^ { +\infty } x ^ {2} f( x- |
\theta ) dx < \infty | \theta ) dx < \infty | ||
$$ | $$ | ||
Line 51: | Line 51: | ||
$$ | $$ | ||
− | \widehat \theta ( X) = X _ {( | + | \widehat \theta ( X) = X _ {(n1)} - |
\frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n } f( x+ Y _ {i} ) dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n } f( x+ Y _ {i} ) dx } | \frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n } f( x+ Y _ {i} ) dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n } f( x+ Y _ {i} ) dx } | ||
, | , | ||
$$ | $$ | ||
− | where $ Y _ {i} = X _ {( | + | where $ Y _ {i} = X _ {(ni)} - X _ {(n1)} $, |
− | and $ X _ {( | + | and $ X _ {(ni)} $ |
is the $ i $- | is the $ i $- | ||
th [[order statistic]] of the observation vector $ X $. | th [[order statistic]] of the observation vector $ X $. | ||
− | The Pitman estimator is unbiased (cf. [[ | + | The Pitman estimator is unbiased (cf. [[Unbiased estimator]]); it is a [[Minimax estimator|minimax estimator]] in the class of all estimators for $ \theta $ |
with respect to the quadratic loss function if all equivariant estimators for $ \theta $ | with respect to the quadratic loss function if all equivariant estimators for $ \theta $ | ||
have finite risk function [[#References|[2]]]. | have finite risk function [[#References|[2]]]. | ||
Line 79: | Line 79: | ||
$$ | $$ | ||
− | \widehat \theta ( X) = X _ {( | + | \widehat \theta ( X) = X _ {(n1)} - |
\frac{1}{n} | \frac{1}{n} | ||
, | , |
Latest revision as of 19:05, 17 January 2024
An equivariant estimator for the shift parameter with respect to a group of real shifts, having minimal risk with respect to a quadratic loss function.
Let the components $ X _ {1} \dots X _ {n} $ of a random vector $ X = ( X _ {1} \dots X _ {n} ) $ be independent random variables having the same probability law, with probability density belonging to the family
$$ \{ f( x- \theta ) , | x | < \infty , \theta \in \Theta =(- \infty , + \infty ) \} , $$
and with
$$ {\mathsf E} _ \theta X _ {1} ^ {2} = \int\limits _ {- \infty } ^ { +\infty } x ^ {2} f( x- \theta ) dx < \infty $$
for any $ \theta \in \Theta $. Also, let $ G = \{ g \} $ be the group of real shifts operating in the realization space $ \mathbf R ^ {1} = (- \infty , + \infty ) $ of $ X _ {i} $ $ ( i = 1 \dots n) $:
$$ G = \{ {g } : {gX _ {i} = X _ {i} + g, | g | < \infty } \} . $$
In this case, the task of estimating $ \theta $ is invariant with respect to the quadratic loss function $ L( \theta , \widehat \theta ) = ( \theta - \widehat \theta ) ^ {2} $ if one uses an equivariant estimator $ \widehat \theta = \widehat \theta ( X) $ of $ \theta $, i.e. $ \widehat \theta ( gX) = g \widehat \theta ( X) $ for all $ g \in G $. E. Pitman [1] has shown that the equivariant estimator $ \widehat \theta ( X) $ for the shift parameter $ \theta $ with respect to the group $ G $ that has minimal risk with respect to the quadratic loss function takes the form
$$ \widehat \theta ( X) = X _ {(n1)} - \frac{\int\limits _ {- \infty } ^ { +\infty } xf( x) \prod_{i=2} ^ { n } f( x+ Y _ {i} ) dx }{\int\limits _ {- \infty } ^ { +\infty } f( x) \prod_{i=2}^ { n } f( x+ Y _ {i} ) dx } , $$
where $ Y _ {i} = X _ {(ni)} - X _ {(n1)} $, and $ X _ {(ni)} $ is the $ i $- th order statistic of the observation vector $ X $. The Pitman estimator is unbiased (cf. Unbiased estimator); it is a minimax estimator in the class of all estimators for $ \theta $ with respect to the quadratic loss function if all equivariant estimators for $ \theta $ have finite risk function [2].
Example 1. If
$$ f( x- \theta ) = e ^ {-( x- \theta ) } ,\ \ x \geq \theta , $$
i.e. $ X _ {i} $, $ i = 1 \dots n $, has exponential distribution with unknown shift parameter $ \theta $, then the Pitman estimator $ \widehat \theta ( X) $ for $ \theta $ is
$$ \widehat \theta ( X) = X _ {(n1)} - \frac{1}{n} , $$
and its variance is $ 1/n ^ {2} $.
Example 2. If
$$ f( x- \theta ) = \frac{1}{\sqrt {2 \pi } } e ^ {-( x- \theta ) ^ {2} /2 } ,\ \ | x | < \infty , $$
i.e. $ X _ {i} $, $ i = 1 \dots n $, has normal distribution $ N( \theta , 1) $ with unknown mathematical expectation $ \theta $, then the arithmetic mean
$$ \overline{X}\; = \frac{X _ {1} + \dots + X _ {n} }{n} $$
is the Pitman estimator.
References
[1] | E.J. Pitman, "The estimation of the location and scale parameters of a continuous population of any given form" Biometrika , 30 (1939) pp. 391–421 |
[2] | M.A. Girshick, L.J. Savage, "Bayes and minimax estimates for quadratic loss functions" J. Neyman (ed.) , Proc. 2-nd Berkeley Symp. Math. Statist. Prob. , Univ. California Press (1951) pp. 53–73 |
[3] | S. Zachs, "The theory of statistical inference" , Wiley (1971) |
Pitman estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pitman_estimator&oldid=55091