Namespaces
Variants
Actions

Difference between revisions of "Reproducing kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 136 formulas out of 136 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
(latex details)
 
Line 56: Line 56:
 
 
\begin{equation*} f ( z , z_0 ) = \frac { 1 } { K _ { D } ( z_0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t. \end{equation*}
  
Let T be a domain in {\bf R} ^ { n } and h ( t , p ) \in L ^ { 2 } ( T , d m ) for every p \in E. Here $m ( t ) > 0 is a finite [[Measure|measure]] on T$.
+
Let T be a domain in {\bf R} ^ { n } and h ( t , p ) \in L ^ { 2 } ( T , d m ) for every p \in E. Here $m ( t ) > 0 is a finite [[Measure|measure]] on T$.
  
 
Define a linear mapping L : L ^ { 2 } ( T , d m ) \rightarrow F by
 
Define a linear mapping L : L ^ { 2 } ( T , d m ) \rightarrow F by
Line 68: Line 68:
 
This kernel is non-negative-definite:
 
This kernel is non-negative-definite:
  
\begin{equation*} \sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0 \end{equation*}
+
\begin{equation*} \sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0 \end{equation*}
  
 
\begin{equation*} \xi \neq 0, \end{equation*}
 
\begin{equation*} \xi \neq 0, \end{equation*}
Line 80: Line 80:
 
However, in [[#References|[a6]]] there are some examples of characterizations of H _ { K } for some special operators L and in [[#References|[a5]]] a characterization of the range of a wide class of multi-dimensional linear transforms, whose kernels are kernels of positive rational functions of self-adjoint elliptic operators, is given.
 
However, in [[#References|[a6]]] there are some examples of characterizations of H _ { K } for some special operators L and in [[#References|[a5]]] a characterization of the range of a wide class of multi-dimensional linear transforms, whose kernels are kernels of positive rational functions of self-adjoint elliptic operators, is given.
  
Reproducing kernels are discussed in [[#References|[a5]]] for rigged triples of Hilbert spaces (cf. also [[Rigged Hilbert space|Rigged Hilbert space]]). If H _ { 0 } is a Hilbert space and $A > 0 is a linear [[Compact operator|compact operator]] defined on all of H, then the closure of H _ { 0 } in the norm ( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \| is a Hilbert space H _ { - } \supset H _ { 0 }. The space dual to H_-, with respect to H _ { 0 }, is denoted by H _ { + }, H _ { + } \subset H _ { 0 } \subset H _ { - }. The inner product in H _ { + } is given by the formula ( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }. The space H _ { + } = R ( A ^ { 1 / 2 } )$, equipped with this inner product, is a Hilbert space.
+
Reproducing kernels are discussed in [[#References|[a5]]] for rigged triples of Hilbert spaces (cf. also [[Rigged Hilbert space|Rigged Hilbert space]]). If H _ { 0 } is a Hilbert space and $A > 0 is a linear [[Compact operator|compact operator]] defined on all of H, then the closure of H _ { 0 } in the norm ( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \| is a Hilbert space H _ { - } \supset H _ { 0 }. The space dual to H_-, with respect to H _ { 0 }, is denoted by H _ { + }, H _ { + } \subset H _ { 0 } \subset H _ { - }. The inner product in H _ { + } is given by the formula ( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }. The space H _ { + } = R ( A ^ { 1 / 2 } )$, equipped with this inner product, is a Hilbert space.
  
 
Let A \varphi _ { j } = \lambda _ { j } \varphi _ { j }, where the eigenvalues \lambda_j are counted according to their multiplicities and ( \varphi_j , \varphi _ { m } ) _ { 0 } = \delta _ { j m }, where \delta _ { j m } is the Kronecker delta.
 
Let A \varphi _ { j } = \lambda _ { j } \varphi _ { j }, where the eigenvalues \lambda_j are counted according to their multiplicities and ( \varphi_j , \varphi _ { m } ) _ { 0 } = \delta _ { j m }, where \delta _ { j m } is the Kronecker delta.
  
Assume that $| \varphi_j ( x ) | < c for all j and all x, and \Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$.
+
Assume that $| \varphi_j ( x ) | < c for all j and all x, and \Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$.
  
 
Then H _ { + } is a reproducing-kernel Hilbert space and its reproducing kernel is K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }.
 
Then H _ { + } is a reproducing-kernel Hilbert space and its reproducing kernel is K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }.
Line 92: Line 92:
 
The value u ( y ) is a linear functional in H _ { + }, so that H _ { + } is a reproducing-kernel Hilbert space. Indeed, if u \in H _ { + }, then v : = A ^ { - 1 / 2 } u \in H _ { 0 }. Therefore, denoting v _ { j } : = ( v , \varphi _ { j } ) _ { 0 } and using the [[Cauchy inequality|Cauchy inequality]] and [[Parseval equality|Parseval equality]] one gets:
 
The value u ( y ) is a linear functional in H _ { + }, so that H _ { + } is a reproducing-kernel Hilbert space. Indeed, if u \in H _ { + }, then v : = A ^ { - 1 / 2 } u \in H _ { 0 }. Therefore, denoting v _ { j } : = ( v , \varphi _ { j } ) _ { 0 } and using the [[Cauchy inequality|Cauchy inequality]] and [[Parseval equality|Parseval equality]] one gets:
  
\begin{equation*} | u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| &lt; c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + }, \end{equation*}
+
\begin{equation*} | u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + }, \end{equation*}
  
 
as claimed.
 
as claimed.
Line 105: Line 105:
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top">  N. Aronszajn,  "Theory of reproducing kernels"  ''Trans. Amer. Math. Soc.'' , '''68'''  (1950)  pp. 337–404</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  S. Bergman,  "The kernel function and conformal mapping" , Amer. Math. Soc.  (1950)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  A.G. Ramm,  "On the theory of reproducing kernel Hilbert spaces"  ''J. Inverse Ill-Posed Probl.'' , '''6''' :  5  (1998)  pp. 515–520</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A.G. Ramm,  "On Saitoh's characterization of the range of linear transforms"  A.G. Ramm (ed.) , ''Inverse Problems, Tomography and Image Processing'' , Plenum  (1998)  pp. 125–128</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  A.G. Ramm,  "Random fields estimation theory" , Longman/Wiley  (1990)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  S. Saitoh,  "Integral transforms, reproducing kernels and their applications" , ''Pitman Res. Notes'' , Longman  (1997)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  L. Schwartz,  "Sous-espaces hilbertiens d'espaces vectoriels topologique et noyaux associes"  ''Anal. Math.'' , '''13'''  (1964)  pp. 115–256</td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  N. Aronszajn,  "Theory of reproducing kernels"  ''Trans. Amer. Math. Soc.'' , '''68'''  (1950)  pp. 337–404</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  S. Bergman,  "The kernel function and conformal mapping" , Amer. Math. Soc.  (1950)</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  A.G. Ramm,  "On the theory of reproducing kernel Hilbert spaces"  ''J. Inverse Ill-Posed Probl.'' , '''6''' :  5  (1998)  pp. 515–520</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  A.G. Ramm,  "On Saitoh's characterization of the range of linear transforms"  A.G. Ramm (ed.) , ''Inverse Problems, Tomography and Image Processing'' , Plenum  (1998)  pp. 125–128</td></tr>
 +
<tr><td valign="top">[a5]</td> <td valign="top">  A.G. Ramm,  "Random fields estimation theory" , Longman/Wiley  (1990)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  S. Saitoh,  "Integral transforms, reproducing kernels and their applications" , ''Pitman Res. Notes'' , Longman  (1997)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  L. Schwartz,  "Sous-espaces hilbertiens d'espaces vectoriels topologique et noyaux associés"  ''Anal. Math.'' , '''13'''  (1964)  pp. 115–256</td></tr>
 +
</table>

Latest revision as of 17:31, 4 February 2024

Consider an abstract set E and a linear set F of functions f : E \rightarrow \mathbf{C}.

Assume that F is equipped with an inner product ( f , g ) and F is complete with respect to the norm \| f \| = ( f , f ) ^ { 1 / 2 }. Then F is a Hilbert space.

A function K ( x , y ), x , y \in E, is called a reproducing kernel of such a Hilbert space H if and only if the following two conditions are satisfied:

i) for every fixed y \in E, the function K ( x , y ) \in H;

ii) ( f ( x ) , K ( x , y ) ) = f ( y ), \forall f \in H.

This definition is given in [a1]; see also [a6].

Some properties of reproducing kernels are:

1) If a reproducing kernel K ( x , y ) exists, then it is unique.

2) A reproducing kernel K ( x , y ) exists if and only if | f ( y ) | \leq c ( y ) \| f \|, \forall f \in H, where c ( y ) = \| K ( . , y ) \|.

3) K ( x , y ) is a non-negative-definite kernel, that is,

\begin{equation*} \sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in {\bf C} ^ { n }, \end{equation*}

where the overbar stands for complex conjugation.

In particular, 3) implies:

\begin{equation*} K ( x , y ) = \overline { K ( y , x ) } , K ( x , x ) \geq 0, \end{equation*}

\begin{equation*} | K ( x , y ) | ^ { 2 } \leq K ( x , x ) K ( y , y ). \end{equation*}

Every non-negative-definite kernel K ( x , y ) generates a Hilbert space H _ { K } for which K ( x , y ) is a reproducing kernel (see also Reproducing-kernel Hilbert space).

If K ( x , y ) is a reproducing kernel, then the operator K f : = ( K f ) ( \cdot ) = ( f , K ( x , ) ) = f ( \cdot ) is injective: K f = 0 implies f = 0, by reproducing property ii), and K : H \rightarrow H is surjective (cf. also Injection; Surjection). Therefore the inverse operator K ^ { - 1 } is defined on R ( K ) = H, and since K f = f, the operator K is the identity operator on H _ { K }, and so is its inverse.

Examples of reproducing kernels.

Consider the Hilbert space H of analytic functions (cf. Analytic function) in a bounded simply-connected domain D of the complex z-plane. If f ( z ) is analytic in D, z _ { 0 } \in D, and the disc D _ { z _ { 0 } , r } : = \{ z : | z - z _ { 0 } | \leq r \} \in D, then

\begin{equation*} | f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L^2(D) }. \end{equation*}

Therefore H is a reproducing-kernel Hilbert space. Its reproducing kernel K _ { D } ( z , \zeta ) is called the Bergman kernel (cf. also Bergman kernel function).

If \{ \phi_j ( z ) \} is an orthonormal basis of H (cf. also Orthogonal system; Basis), \phi _ { j } \in H, then K _ { D } ( z , \zeta ) = \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( z ) \overline { \phi _ { j } ( \zeta ) }.

If w = f ( z , z_0 ) is the conformal mapping of D onto the disc | w | \leq \rho _ { D }, such that f ( z , z _ { 0 } ) = 0, f ^ { \prime } ( z _ { 0 } , z _ { 0 } ) = 1, then [a2]:

\begin{equation*} f ( z , z_0 ) = \frac { 1 } { K _ { D } ( z_0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t. \end{equation*}

Let T be a domain in {\bf R} ^ { n } and h ( t , p ) \in L ^ { 2 } ( T , d m ) for every p \in E. Here m ( t ) > 0 is a finite measure on T.

Define a linear mapping L : L ^ { 2 } ( T , d m ) \rightarrow F by

\begin{equation} \tag{a1} f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t ). \end{equation}

Define the kernel

\begin{equation} \tag{a2} K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E. \end{equation}

This kernel is non-negative-definite:

\begin{equation*} \sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0 \end{equation*}

\begin{equation*} \xi \neq 0, \end{equation*}

provided that for any set \{ p _ { 1 } , \dots , p _ { n } \} \in E the set of functions \{ h ( t , p _ { j } ) \} _ { 1 \leq j \leq n} is linearly independent in L ^ { 2 } ( T , d m ) (cf. Linear independence).

In this case the kernel K ( p , q ) generates a uniquely determined reproducing-kernel Hilbert space H _ { K } for which K ( p , q ) is the reproducing kernel.

In [a6] it is claimed that a convenient characterization of the range R ( L ) of the linear transformation (a1) is given by the formula R ( L ) = H _ { K }. In [a4] it is shown by examples that such a characterization is often useless in practice: in general the norm in H _ { K } can not be described in terms of the standard Sobolev or Hölder norms, and the assumption in [a6] that H _ { K } can be realized as L ^ { 2 } ( E , d \mu ) is not justified and is not correct, in general.

However, in [a6] there are some examples of characterizations of H _ { K } for some special operators L and in [a5] a characterization of the range of a wide class of multi-dimensional linear transforms, whose kernels are kernels of positive rational functions of self-adjoint elliptic operators, is given.

Reproducing kernels are discussed in [a5] for rigged triples of Hilbert spaces (cf. also Rigged Hilbert space). If H _ { 0 } is a Hilbert space and A > 0 is a linear compact operator defined on all of H, then the closure of H _ { 0 } in the norm ( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \| is a Hilbert space H _ { - } \supset H _ { 0 }. The space dual to H_-, with respect to H _ { 0 }, is denoted by H _ { + }, H _ { + } \subset H _ { 0 } \subset H _ { - }. The inner product in H _ { + } is given by the formula ( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }. The space H _ { + } = R ( A ^ { 1 / 2 } ), equipped with this inner product, is a Hilbert space.

Let A \varphi _ { j } = \lambda _ { j } \varphi _ { j }, where the eigenvalues \lambda_j are counted according to their multiplicities and ( \varphi_j , \varphi _ { m } ) _ { 0 } = \delta _ { j m }, where \delta _ { j m } is the Kronecker delta.

Assume that | \varphi_j ( x ) | < c for all j and all x, and \Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty.

Then H _ { + } is a reproducing-kernel Hilbert space and its reproducing kernel is K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }.

To check that K ( x , y ) is indeed the reproducing kernel of H _ { + }, one calculates ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } K ) _ { 0 } = ( u , A ^ { - 1 } K ) _ { 0 } = u ( y ). Indeed, A ^ { - 1 } K = I is the identity operator because A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x ), so that K ( x , y ) is the kernel of the operator A in H _ { 0 }.

The value u ( y ) is a linear functional in H _ { + }, so that H _ { + } is a reproducing-kernel Hilbert space. Indeed, if u \in H _ { + }, then v : = A ^ { - 1 / 2 } u \in H _ { 0 }. Therefore, denoting v _ { j } : = ( v , \varphi _ { j } ) _ { 0 } and using the Cauchy inequality and Parseval equality one gets:

\begin{equation*} | u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + }, \end{equation*}

as claimed.

From the representation of the inner product in the reproducing-kernel Hilbert space H _ { + } by the formula ( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 } it is clear that, in general, the inner product in H _ { + } is not an inner product in L ^ { 2 } ( E , d \mu ).

The inner product in H _ { + } is of the form

\begin{equation*} ( u , v )_ + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \;\text { if } H _ { 0 } = L ^ { 2 } ( D ), \end{equation*}

where the distributional kernel B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) } acts on u \in R ( A ) by the formula \int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x ), where ( u , \varphi _ { j } ) _ { 0 } : = \int _ { D } u ( y ) \overline { \varphi _ { j } ( y ) } d y is the Fourier coefficient of u (cf. also Fourier coefficients). If u \in R ( A ), then u = A w for some w \in H _ { 0 }, and ( u , \varphi_j ) = \lambda _ { j } w _ { j }. Thus, the series \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi_j ) _ { 0 } \varphi _ { j } ( x ) = \sum _ { j = 1 } ^ { \infty } w _ { j } \varphi _ { j } ( x ) = w ( x ) converges in H _ { 0 } = L ^ { 2 } ( D ).

References

[a1] N. Aronszajn, "Theory of reproducing kernels" Trans. Amer. Math. Soc. , 68 (1950) pp. 337–404
[a2] S. Bergman, "The kernel function and conformal mapping" , Amer. Math. Soc. (1950)
[a3] A.G. Ramm, "On the theory of reproducing kernel Hilbert spaces" J. Inverse Ill-Posed Probl. , 6 : 5 (1998) pp. 515–520
[a4] A.G. Ramm, "On Saitoh's characterization of the range of linear transforms" A.G. Ramm (ed.) , Inverse Problems, Tomography and Image Processing , Plenum (1998) pp. 125–128
[a5] A.G. Ramm, "Random fields estimation theory" , Longman/Wiley (1990)
[a6] S. Saitoh, "Integral transforms, reproducing kernels and their applications" , Pitman Res. Notes , Longman (1997)
[a7] L. Schwartz, "Sous-espaces hilbertiens d'espaces vectoriels topologique et noyaux associés" Anal. Math. , 13 (1964) pp. 115–256
How to Cite This Entry:
Reproducing kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reproducing_kernel&oldid=50502
This article was adapted from an original article by A.G. Ramm (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article